Realf freud # Fatal and Near-Fatal Forest Fires The Common Denominators by Carl C. Wilson ighting large forest fires often is compared to military operations. Each involves a highly structured organization with a "general" at the head, massive movements of men and equipment, tactical aerial support and long periods of combat and stress until the enemy finally is conquered. Yet, there is one major difference between military and firefighting strategy: in suppressing large fires we do not take the calculated risk of losing fire fighters. In spite of this policy, many people have lost their lives in forest fires in the United States. The concern is with the differences and the similarities between those fires in which someone dies and those in which someone has a very narrow escape. As this article will show, the line is thinly drawn and depends on many factors, the most vital and most uncertain being that of human behavior. A review of the U.S. Forest Service's records between 1926 and 1976 shows that 145 men died on 41 fires from fire-induced injuries. There have been no heavy losses in recent years. The largest losses on single fires occurred on the Blackwater fire in Wyoming in 1937 and on the Rattlesnake fire in California in 1953 (Table 1). In each case, 15 people died. A similar analysis made of people lost on fires in areas protected by other Federal agencies and State, county and private agencies reveals 77 fire-induced fatalities on 26 fires. The one fire responsible for the largest number of lost lives was the 1933 Griffith Park Fire in southern California, which accounted for 25 fatalities and 128 injured people (Table 2). The data in these tables and in the two additional tables listing "near-fatal" fires (Tables 3 and 4) help demystify these related fire types. It is possible to identify some common denominators of fire behavior in both fatal and near-fatal fires. It should be stressed at the very beginning, however, that all fires differ and the change of one small factor can result in an entirely different picture. A glance through the four tables should convince any reader of the immense variability between the circumstances surrounding each fire. The tables also show that fatal and near-fatal fires often involve so-called "erratic fire behavior" and occur under seemingly innocuous conditions. Finally, we need to examine the potential for future tragedy fires and offer some suggestions and guidelines to the man who is going to be out there on the fire line tomorrow. #### **Common Denominators of Fatal Fires** Based on personal knowledge and information obtained from reports and reviewers, the following generalizations can be made about the fatal fires in Tables 1 and 2: 1. Most of the incidents occurred on relatively small fires or isolated sectors of larger fires. - 2. Most of the fires were innocent in appearance prior to the "flare-ups" or "blow- ups". In some cases, the fatalities occurred in the mop-up stage. - 3. Flare-ups occurred in deceptively light fuels. - 4. Fires ran uphill in chimneys, gullies, or on steep slopes. - 5. Suppression tools, such as helicopters or air tankers, can adversely modify fire behavior. (Helicopter and air tanker vortices have been known to cause flare-ups.) In Tables 3 and 4, near-fatal fires are those close calls which involved a potential threat to life. A review of these tables shows that most of the generalizations made concerning fire behavior apply to near-fatal fires as well as to fatal fires. The hairline difference between the two groups of fires is determined by the individual's reaction to his suddenly critical situation. Escapes may be said to be due either to luck, circumstances, advance planning, a person's ability to stay cool and not panic, or a combination of these factors. Whatever the reasons, individual behavior and circumstances determine between life and death. For the individual fire fighter and crew boss, it becomes increasingly important to be able to identify those conditions under which so many close calls and fatalities occur. #### **Surprising Factors** Many fire fighters are surprised to learn that fatal and near-fatal incidents occur in fairly light fuels, on small fires or isolated sectors of large fires, and that behavior is relatively quiet just before the incident. The general belief is that the high-intensity crown fire in timber or heavy brush is most likely to trap and kill forest fire fighters. Yet, with rare exceptions, such as the disastrous Sundance fire (north Idaho, 1967), the Blackwater fire (Wyoming, 1937) and King's Canyon fire (western Nevada, 1967), most of the fires in this study were innocent-appearing just before the accidents. Why, then, do these tragedies and near-fatalities occur under so-called "easy" fire behavior conditions? First, fire spread and intensity can change much more quickly in light fuels than in heavy fuels. Thus, finer fuels tend to be more responsive to changes in atmospheric conditions than heavy fuels. Second, hot, dry weather or Santa Ana (föehn-type) winds dry out the lighter fuels with the result that any change of wind, slope, or other environmental factor may lead to a drastic and unanticipated change in fire behavior. For example, in some areas in the West, downslope winds may occur normally during the afternoon or following thunderstorms. In such cases, an "unexpected wind" or "erratic fire behavior" is blamed for the disaster. In addition, there are few visual clues to warn of fire behavior changes, because dry fuels burn with little or no smoke. Under such conditions, the obvious signs of a change, such as smoke and crackle of flames, are only noticeable once the situation already has become critical. It is, therefore, important that the fire fighter be alert and sensitive to the fire's behavior, particularly under those environmental circumstances in which a sudden change in fire behavior may occur. Topography, like wind, has a major influence on fire behavior. A fire spreading uphill resembles a fire spreading before a strong wind. The rate of spread will usually increase as the slope increases. Not only are the flames closer to the steep slope, but also convection is more likely to carry firebrands and start spot fires. For example, other factors remaining constant, a fire burning on level ground (0 to 5%) will spread twice as fast when it reaches a 30 percent slope. The rate of spread will double again as the slope reaches 55 percent. Topography also has another major effect on fire behavior. Box canyons, narrow canyons and gulches tend to act like the chimney of a stove. Radiation, convection and spotting speed up as if a damper were opened in a chimney. The external signs and warnings are important, but the internal state of the fire fighter also must be considered in an examination of fatal and near-fatal fires. A glance through the "remarks" section of the fatal tables shows some very strange behavior by well-trained fire fighters. A person reading about these incidents may think, "I would never do that... I know what to do in such a situation..." However, conditions on the line are not the same as in a classroom. There are reasons why so many well-trained fire fighters often are unaware of a dangerous situation until it is too late, and reasons why they often act foolishly and fatally once they do become aware. Also, there may be physiological reasons for fire fighters' blindness to their potentially dangerous situation. They may be tired and their senses dulled by a long, fatiguing shift on the fire line. Or they may be fresh, but with their "sensing system" not yet tuned to the early warning signals which precede changes in wind direction, velocity, or both. Another physiological factor which is currently gaining attention is the adverse effects of carbon monoxide upon wildland fire personnel. It is a fact that relatively high concentrations (800+ ppm) in the environment can cause death within several hours. Carbon monoxide can occur in and around wildland fires in low-level amounts.1 Carbon monoxide readings of 50 ppm were taken on a grass fire at a place where a tanker or initial attack crew usually would be operating. On a five-acre prescribed burn at the North Mountain Experimental Area, measured concentrations of 30 ppm were found about 200 feet from the fire front. Research and experience show low-level carbon monoxide poisoning can impair alertness, judgement, vision, and some psychomotor functions. The fire fighter is less likely to be capable of detecting the warning signals associated with drastic changes in fire behavior when he or she is being affected by carbon monoxide. Carbon monoxide studies made on the Deadline fire (Sawtooth National Forest) and Outlaw fire (St. Joe National Forest) during the 1974 fire season showed that on one fire, most of the fire fighters were exposed to levels of ¹ Countryman, C.M. 1971. Carbon monoxide: a firefighting problem, U.S. Forest Service, Pacific Southwest Forest and Range Exp. Stn. 6 p., illus. carbon monoxide higher than those permitted by the standard proposed by the National Institute of Occupational Safety and Health (35 ppm during an 8-hour period).² Since the effect of carbon monoxide is cumulative, it becomes a matter of great concern to fire fighters. They should be aware of the kinds of topography which encourage the build-up of carbon monoxide. Since carbon monoxide is heavier than air, this includes areas such as saddles, deep canyons and depressions. #### Potential for Loss of Life The potential for loss of life on forest fires because of burns or other fire-induced causes, is higher now than ever before. There are twice as many people in the United States in 1977 as there were in 1926, and many of these people live or play in the wildlands. As a result, "protection of life and property" has begun to dominate fire suppression action plans. The relative safety of "perimeter fire strategy" often must be sacrificed in favor of people and their possessions. This puts forest fire agencies and fire departments at a disadvantage since most training in the past has concentrated on perimeter strategy. Additional hazards arise as the state, city, and county fire departments confront the extraordinarily flashy grass, brush, and timber fuels in the urban-wildland border. New fire suppression technology, including air tankers, helitack, chemical fire retardants, and other new tools and techniques have contributed indirectly to the problem by reducing the number of fires which escape initial attack. There are fewer opportunities for training assignments for young people on large fires. As a result, many do not have the chance to use fire behavior training knowledge learned in the classrooms. Moreover, some of the new firefighting tools, such as helicopters and air tankers, create vortices which can adversely affect fire behavior. An analysis of the Timberlodge fire (Sierra National Forest) showed that vortex turbulance created by an aircraft can be projected to the surface.³ A small fire can then blow up, particularly if the wind is light and the atmosphere unstable. In summation, there seems to be a strong justification for being pessimistic about the future. There is another side to the story too, however, one that includes some hope for the future. Firstly, there are better fire behavior courses now, and more people from all agencies are being trained. Under the auspices of the National Wildfire Coordinating Group, interagency teams are developing new fire behavior courses. Secondly, strengthened fuel management programs and the integration of fire into forest land use planning are reducing the threat to fire fighters and to the people who live and play in the forests. New developments in the field include major improvements in aerial support for ground forces. New air tanker systems, better fire retardants, larger and faster helicopters, and the potential for "first-night control" using night-navigational systems for helicopters, all can (Continued on page 15) ² Tietz, John G. 1975. Firefighters' exposure to carbon monoxide on the Deadline and Outlaw fires. ED&T 2424 (Smoke Inhalation Hazards), Forest Service, USDA Equip. Dev. Center, Missoula, Mont. 8 p., illus. ³ Davis, James B., and Craig C. Chandler, 1965. Vortex turbulance—its effect on fire behavior. Fire Control Notes 25(1):4-7, illus. # TABLE 1 Common Denominators of Fire Behavior On Fatal Forest Fires | Name of Fire,
National
Forest
And Year | Deaths
By
Burning | Erratic
Fire
Behavior | Remarks | |---|-------------------------|---|--| | Romero
Los Padros
1971 | 4 | Strong, "Sundowner" (Santa
Ana) evening wind pushed
fire downhill. | Bulldozer operator and 3
men burned as they hurried
downhill to find safety. | | Banning
San
Bernardino
1971 | 1 | Fire ran upslope in early evening. | Member of tanker crew was
laying hose downhill from
road at night. | | Canyon
Angeles & L.A.
Co.F.D.
1968 | 8 | Santa Ana weakened, and
unexpected wind pushed
fire upslope in
late morning. | Men tried to outrun fire uphill after flareup in brush below them. | | Williams
Coronado
1968 | 1 | High temperatures, local gusty winds-cumulus clouds near fire. | Burned trying to outrun fire. | | Slaughter
Apache
1967 | 1 | Fire became intense in pre-
commercial thinning slash. | Fire boss tried to outrun
fire and couldn't hear
warning calls from crew on
road. | | Sundance
Kootenai
1967 | 2 | Fire blew up and made
major run toward north
under strong wind con-
ditions. | Operator and man with
tractor were ahead of fire
and tried to hide under
blade. | | Bailiff
San
Bernardino
1967 | 1 | Flareup at night in light fuels on steep slope. | Fire fighter fatally injured when he fell trying to escape flareup. | | Loop
Angeles
1966 | 12 | Unexpected upslope wind in afternoon after Santa Ana stopped. | Fire fishhooked under crew
in a chimney and part of
the crew couldn't reach
safety in time. | | Coyote
Los Padres
1964 | | Downslope wind through
Romero Saddle in early
afternoon. | Man panicked and ran to
lower part of saddle where
the temperatures and car-
bon monoxide concentration
were too high. | | Fimberlodge
Sierra
1962 | 4 | Hot,dry, unstable at-
mosphere and light
fuels. Loaded B-17
air tankers flew low
over fire. | Tornado-like action from
air tanker vortices prob-
ably caused fire to blow up
and trapped men. | | Silver Creek
Vezperce
1961 | 2 | Fire spotted in ex-
tremely steep terrain
in light fuel under
gusty wind conditions
near the bottom of the
fire. | Crew went to a chute above
spot fire, but all except
two men left chute when
danger was obvious. One
man had asthma and had to
move slowly. | | iierra
Ingeles
1961 | 1 | Sudden, unexpected wind change. | Man unable to gain safety in time. | | Cummings Cr.
Imatilla
1960 | 1 | Unexpected wind change in light fuel on ridge. | Man dropped behind and couldn't keep up with crew when fire flared up below them. | | ory
Jequoia
1959 | 1 | Unexpected downslope
afternoon wind on east-
facing slope. | Two men were returning after
going downhill to get water.
Fire came downhill and
trapped them. | | itable
lan Bernardino
959 | 1 | Very hot and dry, un-
stable atmosphere. | Tried to outrun fire but apparently had heart attack. | | lecker
leveland
959 | 5 | Downslope afternoon wind stopped and fire came up-
slope in early evening. | District Ranger and four men were on state highway when fire came upslope and caught them in the open. | | iun
ngeles | 1 | Minor flareup. Fire in front country canyon and wind changed. | Man was laying hose uphill was caught by fishhook run. | | ibert Ranch
ngeles
958 | 1 | Minor flareup as wind changed at night. | Man was trapped ahead of fire. | | Name of Fire,
National
Forest
And Year | Deaths
By
Burning | Erratic
Fire
Behavior | Romarks | |---|-------------------------|---|---| | Stewart
Cleveland
1958 | 1 | Minor flareup in chapar-
ral under weakening
Santa Ana conditions. | Out-of-region man scouting in brush ahead of fire. | | Inaja
Cleveland
1956 | 11 | Upslope wind in evening when Santa Ana winds eased. Fire ran uphill. | Crew working on indirect
line of canyon. Fire fish-
hooked under them, ran
upslope and caught them
before they could reach
safety. | | East Highlands
San
Bernardino
1956 | 1 | Upslope winds in light
fuels after Santa Anas
tapered off at night. | Tractor operator trapped be fore he could reach safety. | | Sagebrush
Cyclone
Malheur
1955 | 1 | Fire was being mopped up
in sage and grass. Down
drafts from cumulus cloud
caused unexpected wind. | Man was separated from
crew and tried to outrun fin | | Johnson
Prescott
1955 | 1 | FDR "Extreme," and fire made run in light fuels. | Man tried to outrun fire uphill. | | Tunnel No. 6
Tahoe
1954 | 3 | Mono (dry east) winds caused flareup at night. | Men were sleeping in un-
burned area at edge of
fire. | | Rattlesnake
Mendocino
1953 | 15 | Unexpected evening downslope wind caught entire crew eating lunch on a spotfire. | Part of crew tried to outrun fire downhill. | | Mann Guich
Helena
1949 | 13 | Rapid spread in light fuels
burned upslope. Hot, dry
weather. | Smokejumpers jumped into
unburned basin, and fire
fishhooked below them.
Most men failed to use
area (burned area) and
were caught going uphill. | | Hells Canyon
Payette
1949 | 1 | Fire fanned by high winds. | Man stumbled and fell into fire. | | Warm Springs
Payette
1949 | 1 | Unexpected strong winds caused flareup. | Man dropped behind crew to eat lunch and was trapped. | | Walton Spur.
Stanislaus
1949 | 1 | Swirling winds in light
fuels in Tuolumne River
Canyon. | Tractor operator trapped above fire. | | Barrett Dam
Cleveland
1948 | 1 | Winds changed at night from
SW to East, and fire flared
up. | Man became separated from crew. | | Bryant Canyon
Angeles
1947 | 2 | Spotfire below men burned
upslope trapping men in un-
burned fuel. | Burning rat ran out of
main fire into nest.
Spotfire spread uphill
under men. | | Hot Springs
Payette
1944 | 1 | Man found in sitting posi-
tion on trail. Fire
burned around him. | Suspected heart attack
or other health problem. | | lauser Creek
Jeveland
1943 | 11 | Sudden wind shift under
slackening Santa Ana con-
ditions -maximum wind 8
miles/hr. SW. | Crew of Marines caught in small canyon off main Hauser Creek (72 were injured). | | Williams Hill
Los Padres
1943 | 1 | Fire made a run in chamise
and buckwheat | Cat operator was building
line in advance of fire.
Cat threw track, and op-
erator tried to escape
fire. | | Silver Plume
Lincoln
1940 | 1 | Sudden wind change and fire flared up. | Man sleeping outside
fire line. | | Rock Creek
Humboldt
Toiyabe)
1939 | 5 | Sagebrush and grass fire made an "unexpected run" upslope and trapped boys. | Five CCC boys from
Paradise Camp were burned
to death on fire near
head of Rock Creek. | (Table 1 continued on next page) | Name of Fire,
National
Forest
And Year | Deaths
By
Burning | Errefic
Fire
Behavler | Romerks | |---|-------------------------|--|---| | Blackwater
Shoshone
1937 | 15 | "Sudden wind" caused fire
to blow up in heavy
Douglas-fir re-burn.
Spotfire made a run uphill
toward men. | Men went in from top to-
ward spotfire - then it
flared up. Part of crew
found safety on rocky
point. | | Welcome Lake
Huron
1937 | | Early spring fire, strong,
dry winds from West. Fire
crowned in jack pine and
red pine plantation. | CCC foreman was pulling his crew out when it started to crown. He was looking for 2 of his men and was trapped and died 100 feet from safety. | | Kamus Burn
Okanogan
1933 | 2 | Fire in light fuels, and wind changed direction. | Men tried to outrun fire but failed. | | Dollar Mt.
Colville
1929 | 1 | Sudden wind change in relatively light fuels. | Man tried to outrun fire uphill. | | King's Canyon
Toiyabe
1926 | 5 | Unexpected downslope wind
on lee side of Sierra
pushed fire into second-
growth forest with under-
story of brush. | Men had gone downhill for
water and were trapped on
road when wind changed. | ## **TABLE 2** #### Common Denominators of Fire Behavior On Fatal Forest Fires (State, County and Local Agencies) | Name of Fire,
State
And Year | Deaths
By
Burning | Erratic
Fire
Behavior | Remarks | |---|-------------------------|---|---| | Battlement
Creek
Colorado
1976 | 3 | Rapid upslope fire on a steep draw with Southwest exposure on mixed mountain shrub type. | Four men were trapped
on narrow fireline on
ridge and three died. | | Morgan Co.
Tennessee
1972 | 1 | Small 24-acre fire. Wind
gusts 20-25 mph. Fire
crossed plowed line. | Plow operator trapped
and suffocated on bench
on upper side of fire. | | Harris Ridge
Idaho
1972 | 2 | Steep, rocky terrain. Dry
grass and brush and scat-
tered trees. Thunderstorms
caused "squirrely winds." | Two men on fire line. A rolling log hit the men, and they rolled into the fire and died of suffocation. | | Banks
Arkansas
1972 | 1 | Medium fuels, moderate winds, very high FDR. | Man was knocked uncon-
sious by falling tree.
He was fatally burned. | | Eagle Rock
Virginia
1971 | 1 | Reburn in rhododendron, steep slope. | Three men were felling snags. | | None
N. Carolina
1968 | 1 | Unknown | Man, age 84, tried to
beat fire with pine tops;
clothes caught fire; was
dead when found. | | None
Florida
1968 | 1 | Heavy palmetto and wiregrass.
Unexpected wind. | One-man suppression crew
tractor lodged on stump,
and man couldn't escape. | | None
N. Carolina
1968 | 1 | Unknown | A county ranger was sup-
pressing fire. Died of
3rd degree burns. | | None
Mississippi
1967 | 1 | Small fire, flashy fuels, gusty winds. | Man backfiring but lost
backfire. Died after 3
days in hospital. | | Mindsor
S. Ceroline
1967 | 1 | Weather dry and windy.
Fire (4,000 acres) was
fast-moving and erratic
in pine. | Man was trapped by fast-
moving head fire in
dense smoke, couldn't
escape. | | letker
K. Carolina
1965 | 1 | Wind speed increased.
Fire in broom sedge. | Was helping on control
burn. Was caught in
wire fence and burned to
death. | | Name of Fire,
State
And Year | Deeths
By
Burning | Erratic
Fire
Behavior | Remarks | |--|----------------------------------|---|--| | Fairriew
Hollow
Kentucky
1965 | 3 | Small fire (26.6 acres) near town, light wind. Fire burned in a small hollow with 40-65 degree slope. Fuels were light carpet of leaves of beech, oak, maple, basswood, and poptar. | Men ran up the hill
ahead of fire but were
trapped on steep slope. | | Joshua Fails .
Virginia
1964 | 1 | Fire burned up draw to-
ward men. | One man apparently re-
fused to follow leader
and was killed by heat. | | None
Georgia
1963 | 1 | Control burn escaped. | Man overcome by smoke and/or coronary. | | Unnamed
Georgia
1960 | 8 | Ordinary, Control burn escaped. | All 8 men were shown
as dying of heart
attacks. (Only 3 were
70+) | | None
Florida
1960 | 1 | Light fuels and unexpected wind change. | Two men on jeep. One ran to safety. | | Siler City
N. Carolina
1960 | 1 | Fire in grass. | Man burned to death
while attempting to put
out grass fire. | | Pennington
Texas
1959 | 1 | High winds in grassy fuels. | Man on road grader got
in front of head of fire
and was killed. | | Hacienda
California
1955 | 5 | Light fuels, high tempera-
tures, low humidity and
unstable atmosphere. Fire-
threatening homes. | Foreman and crew were in
bowl-like area when
flashover occured. | | Gap Creek
Tennessee
1954 | 3 | Stong winds pushed fire upslope and it crowned | Men were trapped on slope above fire. | | None
N. Carolina
1953 | 2 | Woods fire. | Woman (age 82) and
child (age 11) were
burned in woods fire
trying to put it out. | | Bonnie Blue
Virginia
1953 | 1 | Fire burned rapidly up steep slope. | Man became separated
from main crew and was
burned. | | Glenville Dist
Arkansas
1952 | 1 | Sagebrush & grass, high
winds, high FDR and fire
threatening homes. | Individual fighting fire
fell in path of fire
(from exhaustion) and
died. | | Kawailoa
Hawaii
1941 | 2 | Flashy fuel and the wind changed unexpectedly. | Two men were unable to gain safety in thick staghorn fern. | | Pepper Run
Pennsylvania
1938 | 8 | Fire burning in mixed-
hardwood leaves on
fairly steep slope.
Wind shifted and
crossed fireline below
men. Final size 134
acres. | Squad foreman told men
to run for safety.
All ran up the hill
and were caught by
the fire. | | Griffith Park
California
1933 | 25 killed
plus 128
injured | Fire burned in light
chaparral near Griffith
Park. Wind changed. | Men tried to run for safety, but 25 failed. | ## TABLE 3 # Common Denominators of Fire Behavior On Near-Fatal Forest Fires | Name of Fire,
National
Forest
And Year | Number
Involved | Erratic
Fire
Behavior | Remarks | |---|-----------------------------|---|---| | Meyers Fire
San Ber-
nardino
1970 | Sector
Boss and
crews | Fire burning in steep country and dense chaparral at night and spotted across line. | Crews and cats were building
line downhill when fire blew-
up - they found safety in cat
line. | (Table 3 contined on next page) | Name of Fire,
National
Forest
And Year | Number
laveled | Erratte
Fire
Behavior | Remarks | |--|---|--|---| | Mitchell
Creek Fire | Line boss
and crews | Unexpected strong, upslope winds at midnight caused fire | Crews were pulled out in time. | | Menatchee
1970 | | to jump line. | | | South
Commy Fire
Venatchee
1970 | Crew | Fire spotted below crew and came "roaring up mountain." Weather hot, dry and windy. | Crew in unfamiliar country found refuge in burned-over rock slide for two nights. | | ourth of
july Mt.
ire
Venatchee
1967 | Foreman
and crew | Fire in light fuels was quiet in early morning (2:00-3:00 a.m.), then humidity unexpectedly dropped and entire canyon burned out. | All men were pulled into safety zone. | | ayette
orest Fire
ayette
967 | 6-man
crew | Lodgepole pine blowdown. Gusty
winds caused blow-up from cat
piles. | Three men found safety in clearing, and 3 went into burn. No one hurt. | | Goot Strap
Fire
BLM, Elko
District
1964 | Foreman
and
inmate
crew | Fast-moving fire in sagebrush and grass moving on wide front. | Foreman was driving across
front of fire with crew when
they encountered edge of fire
and drove through safely. | | Aagpie Fire
Vallowa-
Vhitman (near
Jells
Janyon)
1963 | Fire Boss
and 20
men | Fire was in mop-up stage when
there was a sudden increase in
wind - blowing upslope. Fire
burned in dense stand of grass. | Crew working downhill on
steep slope in heavy, dry
grass. Found safety in 30
ft. burned out strip on the
ridge top. | | liver
lend Fire
leschutes
962 | Division
Boss and
Tractor
Operator | Fire burning in open ponderosa pine and manzanita brush. Fire crowned in ponderosa pine. | Man ran uphill along
dozer line and buried
face in soil. Wind let
up, and he escaped. | | resno Co.
ire-Calif.
iv. of
orestry
962 | 4 men
(3
received
burns) | Strong winds in tight fuel (grain field), 90° F temp. Wind shifted unexpectedly. | Fire outflanked 4-man
pumper crew. 3 men found
safety in truck cab. One
man went to burnt out area. | | Salmon
River Fire
Payette
961 | Crew Boss and Pumper Crew | Fire burning in cheatgrass then crowned in brush and fimber on steep slopes of Salmon River. | Fire jumped road, but crew moved back and forth on road to avoid being burned. | | Tenus
Gorge Fire
Wenatchee
1961 | Crew | Fire in heavy cheatgrass and scattered brush in breaks of Columbia River. Spotfire started below crew. | Crew burned out a "safety area" on a knoll. In a few minutes main fire passed, but no one was injured. | | Oregon Protection Agency Fire Ore. Prot. Agency 1960's | Crew Boss
and 37
men | Daytime temperature was 105°, and fire was burning in scrub oak and light brush at night. Unburned fuels inside perimeter caused spots across catline. | Crew moved to safety in time - while 200 acres more burned. | | Fire in
Region 4
1960's | Two men | Fire had burned downhill on ground then crowned uphill toward men. | Men abandoned firefine in time to reach safety. | | Cottonwood
Park Fire
Medicine
Bow
1960's | Grew Boss
and 13
men | Fire was in mop-up stage. Temperatures rose, and unexpected winds blew fire across firelines—because of unburned fuels inside. | Crew scrambled to safety
as fire burned 1,200
acres more. | | Brushy
Suich
Fre
Salmon
1960's | Sector
Team and
40 men | Fire burning in logging slash in
steep canyon at night with up-
canyon winds. | Sector boss and 5 men
found safety at heliport
as fire ran uphili - rest
stayed on firefine. | | Satters
Meadow
Fire
Payette
1957 | Foremas
and brush
crew | Fire burning in spruce logging slash at 7,000 ft. elevation. Winds picked up and blew fire across line. | Foreman and crew had pro-
determined line of retreat
to small meadow and elk
wellow. | | Sagebrush
Cyclone
Malheur
1955 | One crew | Downdrafts from thunderstorm created strong winds on a sage-brush fire. | Experienced logger got
separated from crew, and
he tried to outrun fire
uphili. Rest of crew went | | Ferest
And Year
Milepost | Number Fire Bohavier One Fire made run in sagebrush and | Remarks Wind shifted briefly, and | |--------------------------------|---|--| | 324
Plumas
1949 | | fireboss ran back through
burn to safety. | ## TABLE 4 ## Common Denominators of Fire Behavior On Near-Fatal Forest Fires | Name of Fire,
National
Forest
And Year | Number
Involved | Erratic
Fire
Behavior | Remarks | |--|---|--|--| | Freezeout
Oregon
1973 | 60-70 | Fire came up slope at night into grass-covered area. | Crew pulled away
from edge of
canyon into safty area.
Crew isolated from camp for
3 hours. | | aguna
Jeveland
1970 | 75 men,
2 tractors
and 4
tankers | Fuels were grass and brush.
Wind from E-NE 40mph. Spotfire
outside of line "blew up."
About 40 acres exploded. | All men ran for cat line and
semi-burned area. Nobody
hurt, but all had singed
hair and eyebrows. | | Canyon
Ingeles
1968 | 3 tanker
crews | Backfire operation triggered
flareup of main fire in canyon
below men at night. Tankers
surrounded by unburned fuels. | Tanker crews retreated to
burned out area near
powerline and waited
out the flareup. | | liaska
nterior
Bureau of
and Mgmt.
Territory
1968 | 25 men | Temperatures continued high at night because sun didn't set. Flareup in peat bogs surrounded crew. | Line was abandoned and
men moved into a swamp,
waist-deep in water.
Fire burned in grasses
covering swamp,
but no one was burned. | | Slash
Colville
1967 | Scout | Rebura below saddle in 250-acra cut-block blew through saddle. | Ran downhill through fire in saddle and got second a third degree burns on face, neck and hands. | | ndigo
Siskiyou
1967 | | Fire in Douglas-fir reproduction
and in clear-cut block. Fire
crowned in reproduction and
blocked line of retreat. | Scout ran down cat
line between
fire in cut-block and
flare-up in Douglas-
fir reproduction,
but was not injured. | | vergreen
Mountain
Rogue River
1967 | Crew
Foreman
and
Crew | Firebrands from a clear-cut
area rolled downhill below crew.
Fire fishhooked up slope during
mid-day. | Crew foreman and crew ran to the clear-cut burned area for safety and had to stay six hours. | | Minter Rim
Fremont
1966 | Sector
Boss &
50 men | Light gusty winds at night caused fire to jump line in reproduction patches. | Crew pulled out, and went to
fire perimeter because of
erratic behavior. | | Magpie Ridge
Oregon
1960's | 4 men | Main fire was contained, but
it blew up and headed uphill
toward crew on small spot fire
on slope. | Crew ran toward ridge top
but one man fell and had to
be carried - made safe area
with 5 minutes to spare. | | Noodwardia
Ingeles
1959 | 18 | Fire was smouldering in canyon
below helispot in light fuels. | Eighteen men dug in on lee
side of helispot, and fire
spotted overhead. Steep
downhill situation without
planned escape routs. | | sheview
remost
958 | Sector
Boss &
25 men | Fresh logging slash and pine reproduction. Wind stopped and direction changed unexpectedly. | Sector bess and crew rushed
back into burned area and
suffered minor burns. | | ider Creek
Pregon
955 | One
crew | Fireline being built in bottom of Searily-Limbered canyon. Fire crossed canyon and surrounded crew. | Crew ran down casyon
to edge of fire. One tractor
burned up. | | lorseshoe
Besia
Bellatin
1953 | Crew
Boss &
10 men | Unburned islands of subalpine fuels & small meadows. Unburned islands burned out when cumulus clouds developed over fire. | Fire was spotting all around
men so they sat in pothole
with water up to their necks
while fire blew over. | View of disaster scene in Rattlesnake Canyon, Mendocino National Forest, California where 15 men lost their lives in 1953. Circle in left center of photograph marks the spot where crew was working before fire overran them. Photo courtesy of U.S. Forest Service (Continued from page 10) speed up suppression and reduce threats to the fire fighters on the ground. Finally, more effective use of the National Fire Danger Rating components under pre-suppression and suppression conditions is helping to alert all concerned to potentially explosive conditions. For example, a high ignition component will indicate the high probability of spot fires. Similarly, a high burning index will tell the fire fighter that rapid fire spread can be expected in the light fuels where possibility of getting trapped is the greatest. The final picture, therefore, includes some positive and some negative aspects. The individual fire fighter must realize that this year's fire season is bound to be the worst one ever. Modern technology, however, will help make the job of firefighting as safe as possible. But, the final responsibility rests with him and his fellow fire fighters. Once they are conscious of which situations are potentially dangerous, and once they know what to do in a blow-up or flare-up, their chances for avoiding a fatal fire increase. #### **Conclusions** There are four major common denominators of fire behavior on fatal and near-fatal fires. Such fires often occur: - On relatively small fires or deceptively quiet sectors of large fires. - 2. In relatively light fuels, such as grass, herbs, and light brush. - 3. When there is an unexpected shift in wind direction or in wind speed. - 4. When fire responds to topographic conditions and runs uphill. Yet, these factors should not be considered all inclusive. A sudden change of wind, and the fire may change direction, regardless of the topography. Each set of circumstances has the potential for creating a fatal or near-fatal fire. Often, human behavior is the determining factor. The fire fighter, who "keeps his or her cool" when the wind direction changes, moves back into a burned area, will survive. The fire fighter who panics and tries to outrun a fire under similar conditions may die. The difference between a fatal and a near-fatal fire may be luck, skill, or advanced planning. But in all cases, it pays to be alert and aware of certain conditions which may signal a sudden change in fire behavior. In a few words— Be alert. Watch out for: Light fuels Wind shifts Steep slopes and chimneys The person who is not caught unaware has the best chance for survival. Portions of this paper were originally prepared for the National Advanced Fire Behavior Course, Sunriver, Oregon, April 1974, and for the National Fire Behavior Officers' Training Course, Marana, Arizona, March 1976. Carl C. Wilson joined the U.S. Forest Service in 1946. In 1956 he transferred to the Pacific Southwest Forest and Range Experiment Station of the U.S. Forest Service and, in the following year, became Chief of the Division of Forest Fire Research. He was named Assistant Director of the Experiment Station in 1962, and eleven years later transferred to the Cooperative Fire Protection Staff of State and Private Forestry where he serves as National Fire Specialist. He has done work abroad in the develop- ment of fire management programs for the Food and Agriculture Organization of the United Nations. Mr. Wilson is the author of more than 30 professional and technical publications of forestry and forest fire matters. In 1975, he received an Outstanding Fire Management Award from the Chief, U.S. Forest Service and President, National Association of State Foresters. The International Fire Chief