New GOES-16 satellite offers better detection of wildfires

The GOES-16 satellite that was launched in November is still being tested and is not fully operational, but some of its new capabilities are being explored. It has new sensors, some of which have a much better resolution and are better at detecting smoke. And it can rescan an area as often as every 30 seconds compared to 15 to 30 minute intervals on the older GOES-13 satellite. This makes it possible to produce much better animations of wildfire activity and smoke plumes.

Below is the description provided by NOAA for the video above, which has the imagery from the new GOES-16 on the left, compared to the older GOES-13 on the right.

This comparison of GOES-16 ABI and GOES-13 imager shortwave infrared (3.9 µm) data shows a number of grass fires burning near Lake Okeechobee in southern Florida on February 20, 2017. In the left panel, GOES-16 imagery at 30-second intervals is shown, while the right panel displays GOES-13 imagery at routine 15-30 minute intervals. The warmest shortwave infrared brightness temperatures are enhanced with yellow to red colors (with red being the hottest). Note the many advantages of the 30-second GOES-16 imagery: (1) new fire starts are detected sooner in time; (2) the fire behavior (intensification vs dissipation) can be better monitored; (3) the intensity of the fires is more accurately depicted with the 2-km resolution GOES-16 data vs the 8-km resolution GOES-13 data; (4) numerous brief fires are not detected at all in the 15-30 minute interval GOES-13 imagery (especially south and southeast of Lake Okeechobee, during the 2100-2115 UTC time period).

Bill Line of the NWS has posted a fascinating animated gif on his website that shows wildfires and smoke in Oklahoma today, Saturday.

Below is a screengrab from Mr. Line’s gif. The yellow areas represent heat.

GOES-16 fire smoke wildfire

An excerpt from his description:

The 0.47 um band will have higher reflectance in the presence of atmospheric aerosols (such as smoke) when compared to the legacy 0.64 um visible band. Combining these two bands into one display gives a forecaster a very helpful, quick view of wildfire activity across the region. The 2.25 um band can also be utilized to detect fire hotspots (especially very hot fires), particularly at night when the hotspot contrasts nicely with the surrounding darkness.

Typos, let us know HERE, and specify which article. Please read the commenting rules before you post a comment.

Author: Bill Gabbert

After working full time in wildland fire for 33 years, he continues to learn, and strives to be a Student of Fire.

One thought on “New GOES-16 satellite offers better detection of wildfires”

  1. Now if the US FS can get the 747 tanker flying, we might be able to stop these fires before they get so massively big. Seems to me like having 5000 firefighters on the line every day is a lot more expensive than a couple thousand dollars an hour for an airplane that size.

    0
    0

Comments are closed.