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A B S T R A C T   

The prediction of wildfire rate of spread and growth under high wind speeds and dry fuel moisture conditions is 
key to taking proactive actions to warn and in turn protect communities. We used two datasets of wildfires 
spreading under critical fire weather conditions to evaluate an existing rule of thumb that equates the forward 
rate of fire spread to 10% of the average open wind speed. The rule predicted the observed rates of fire spread 
with an overall mean absolute error of 1.7 km h− 1. The absolute error magnitude was consistent across the range 
in observed rates of fire spread, resulting in a reduction in percent error with an increase in spread rates. Mean 
absolute percent errors close to 20% were obtained for wildfires spreading faster than 2.0 km h− 1. The impli
cations of model errors in the forecasting of fire spread with respect to community warning and safety are 
discussed.   

1. Introduction 

Early and contemporaneous research into the effects of global 
warming on wildfire activity have forecasted an increase in the length of 
the fire seasons and the number of days of extreme fire danger when 
large fire spread events can occur (e.g. Ryan, 1991; Beer and Williams, 
1995; Barbero et al., 2020). The events of the last two decades or so have 
corroborated these hypotheses, with an increase in the number of highly 
destructive wildfires globally (Tedim et al., 2020). Associated with 
many of these events is the substantial loss of human life and property at 
unprecedented rates (Teague et al., 2010; Goldammer et al., 2019; Gee 
and Anguiano, 2020). 

Despite the science of fire behaviour prediction being well estab
lished in many parts of the globe (Scott et al., 2014), it is clear, that even 
in countries with a notable investment in fire behaviour research and 
operational fire intelligence (e.g. situational awareness, fire spread 
forecasting, etc.), fires can still surprise fire management and emergency 
response agencies and cause a large number of fatalities. This is largely 
due to a combination of factors, including the inability of these agencies 
to forecast a wildfire’s propagation, rapidly and effectively 

communicate the potential wildfire threat to the public and take the 
necessary actions to safeguard human lives. 

Wildfires driven by strong winds (Fig. 1a–c) that within a few hours 
of their ignition grow to a large size and quickly impact communities 
with little or no official warning are often associated with multiple fa
talities (Cruz et al., 2012; Blanchi et al., 2014; Brewer and Clements, 
2019; Xanthopoulos and Athanasiou, 2019). For this type of fires, many 
of the methods used by specialised fire behaviour analysts (Scott et al., 
2014; Neale and May 2018) imbedded in incident management teams or 
coordination centres to generate fire spread predictions (Andrews et al., 
2007; Giannaros et al., 2019; Neale and May 2020), might well fail to 
meet the necessary urgency associated with such events. 

Cruz and Alexander (2019) developed a rule of thumb for obtaining a 
first approximation of a wildfire’s forward rate of spread in conifer 
forests, eucalypt forests, and shrublands but not in grasslands. The rule 
of thumb states that a wildfire rate of forward spread is approximately 
10% of the average 10-m open wind speed. The rule was found to be 
most appropriate for strong wind and dry fuel conditions (i.e. both fine 
fuel moisture and overall long-term landscape dryness) associated with 
fast-spreading wildfires, where one would consider that “time is of the 
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essence” for public warnings and evacuation notices. 
The rule of thumb was considered to be appropriate for wildfires 

spreading over level to gently undulating topography and in cases where 
large wildfires advance across drainages with alternating upslope and 
downslope runs. Under extended drought conditions, fuels in moun
tainous topography are readily able to burn regardless of the variations 
in terrain characteristics (Cheney, 1981), When winds are suitably 
strong and accordingly sustained, a high intensity wildfire can continue 
to spread for several hours, burning out entire forested drainages and 
crossing mountain ridges that would normally be a barrier to fire growth 
(Rothermel, 1991). One such spectacular event occurred on September 
6, 1988, when the Canyon Creek fire, under the influence of a dry cold 

front, advanced eastward across the Continental Divide (Fig. 1a) and out 
onto the plains of west-central Montana, USA (Goens, 1990). 

Although the empirical basis of the rule of thumb makes it a reflec
tion of the broad wildfire dataset used in its development, no indepen
dent evaluation of its performance has been carried out up to now. Here 
we examine the robustness of this rule of thumb by evaluating its pre
dictive ability against independent wildfire datasets. 

2. Methods 

Observations of forward rate of fire spread were compiled from two 
different databases. This included that of Harris et al. (2011) and Kilinc 
et al. (2012) for Southern Australia wildfires and the BONFIRE global 
fire behaviour database (Fernandes et al., 2020). 

The dataset extracted from Harris et al. (2011) and Kilinc et al. 
(2012) was limited to wildfires in eucalypt forests (Luke and McArthur, 
1978) and included detailed information on fire size, fuel characteristics 
and predictions from rate of fire spread models currently used in 
South-eastern Australia (McArthur, 1967; Cheney et al., 2012). The 
dataset extracted from BONFIRE is broader, containing data from 
wildfires in shrublands, eucalypt forests and conifer forests, but overall 
less detailed regarding fire size and fuel characteristics. 

2.1. Southern Australia database 

Kilinc et al. (2012) assembled a fire behaviour database of Australian 
wildfires occurring in native eucalypt forests. This dataset is largely 
based on the data collated by Harris et al. (2011) aimed at evaluating the 
effects of fire weather and fire behaviour on community impacts, 
although some new fires were added to the database by Kilinc et al. 
(2012). The combined dataset from Harris et al. (2011) and Kilinc et al. 
(2012) used in the current study is given in Table A1 of the Appendix. 

2.1.1. Fire spread isochrones and forward rate of fire spread 
Spatial fire propagation data, including isochrones of progression at 

given time intervals, were derived from published (e.g. CFA, 1999) and 
unpublished wildfire case studies, reports, aerial imagery (photography 
and infra-red line scans), and newspaper articles. Many of the docu
mented wildfires occurred prior to the 1980s, with information 
regarding the spatial attributes of these fires recorded in the form of 
paper maps. These maps were digitised, geometrically rectified and the 
data then processed through a spatial geographical information system 
(GIS) database. Infra-red line scans of fire perimeter location at given 
times obtained from the Country Fire Authority (CFA) and Department 
of Sustainability and Environment (DSE) in the state of Victoria were 
used to reconstruct some of the major fires between the years 2000 and 
2007. Accounts of fire progression typically came from direct observa
tions made by experienced fire suppression personnel, as recorded in 
logbooks and radio logs. The database also included more detailed fire 
reconstruction information from recent wildfire events such as the 2009 
Black Saturday fires (Teague et al., 2010; Cruz et al., 2012). 

The forward rate of fire spread measurement (R, km h− 1) for a given 
time interval is the maximum R for the interval, determined as R = d/t, 
where d represents the maximum distance (km) from the end point of 
one fire isochrone to the end point of the preceding isochrone and t is the 
time period (h) between isochrones. For some bushfires, no fire pro
gression maps could be retrieved, but R measurements were docu
mented in the form of reports. 

2.1.2. Weather data and fuel moisture content 
Weather data was obtained from the Australian Bureau of 

Fig. 1. View of the convection plumes or columns of three fast-spreading 
wildfires: (a) the Canyon Creek fire in Montana, USA, at approximately 
19:00–20:00 during its main 34-km run on September 6, 1988 (photo by James 
Dolan, USFS); (b) under the plume of the Kilmore East fire in Victoria, 
Australia, at approximately 16:00 on February 7, 2009 (CSIRO file image); and 
(c) Landsat 8 image of the Camp fire in northern California, USA, at 10:45 on 
November 9, 2018, as it was burning through the town of Paradise (image by 
Joshua Stevens, NASA). 
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Meteorology’s automatic weather station (AWS) network records and 
from reports which present data taken from manual weather stations 
located closest to the fire incident. Base data included air temperature, 
relative humidity, rainfall history, and mean 10-m open wind speed 
(U10, km h− 1) and direction. In certain instances, weather observations 
were made some distance from the fire, and thus the actual fire condi
tions may have been significantly different to that indicated by the 
weather observations. For each wildfire spread period considered be
tween two isochrones, the corresponding weather data was taken as the 
average meteorological conditions over the time interval. 

Field measurements of fine dead fuel moisture content (MC, % oven- 
dry weight) were not available for the wildfires analysed. MC was in turn 
estimated from air temperature and relative humidity using models for 
eucalypt forests (Matthews et al., 2010). 

2.1.3. Vegetation and fuel data 
The area enclosed by each wildfire isochrone was classified as either 

dry eucalypt forest or wet eucalypt forest. This information was derived 
from the original fire reports and state vegetation maps. Dry eucalypt 
forests (and woodlands) typically consist of multi-aged stands of a mix of 
eucalypts and have an understorey dominated by hard-leaved shrubs, 
grasses, sedges or bracken fern. Wet eucalypt forests typically consist of 
a tall eucalypt overstorey of multi-aged and mixed species, and a dense 
understorey of ferns, soft broad-leaved shrubs and small trees. 

For wildfires in Victoria, spatially averaged fuel characteristics were 
determined from a database of ecological vegetation classes and asso
ciated age-related fuel accumulation curves (e.g. Walker, 1981), 
allowing fuel characteristics such as load and fuel hazard by understorey 
component (Hines et al., 2010) to be estimated at a given site for any 
given year. For other states, these fuel characteristics were determined 
from reports and estimated through visual examination of photographs 
using the Hines et al. (2010) fuel hazard rating and Gould et al. (2007) 
fuel hazard score assessment guides. 

2.2. BONFIRE database 

Fernandes et al. (2020) surveyed peer-reviewed articles, grey liter
ature and unpublished data on file to develop a global fire behaviour 
database encompassing information from experimental fires, prescribed 
fires and wildfires. In the current analysis, we focused solely on the 
wildfire component of the database. The following information was 
retrieved for each fire: georeferenced location, broad vegetation type (i. 
e. conifer forest, eucalypt forest or shrubland), dominant species, slope 
steepness, observed rate of fire spread, fire run duration, air tempera
ture, relative humidity and U10. When available, fuel complex attributes 
(e.g. fuel loads per size class and live or dead condition, curing or % fine 
dead fuel, fuel depth or height, fuel layer cover), were also extracted. 
Given the diversity of sources, the dataset is somewhat variable in its 
completeness. 

As part of the post-processing of data, MC values were estimated 
from air temperature and relative humidity using vegetation/fuel type 
specific models. This included Matthews et al. (2010) for eucalypt forest, 
the parameterization of this model for semi-arid shrublands given in 
Cruz et al. (2010), Anderson et al. (2015) for temperate shrublands and 
conifer forest with a prominent shrub layer. For other conifer forests we 
used the Rothermel (1983) fuel moisture tables to ensure consistency 
with the data used by Cruz and Alexander (2019) for this vegeta
tion/fuel type. The BONFIRE data used in the current study is given in 
Table A2 of the Appendix. 

2.3. Imposed data constraints and reliability 

Several criteria were imposed on the datasets selected for the anal
ysis to ensure compatibility with the intended use of the 10% rule of 
thumb. Data used in the analyses originated from wildfire runs lasting at 
least 1.0 h, but less than 6.0 h. Wildfires that were affected by frontal 
passage driven wind changes (e.g. Cruz et al., 2012) that altered the 
dynamics of the fire propagation process (Blanchi et al., 2014) were not 
considered as the rule of thumb is not applicable to these situations 
(Cruz and Alexander, 2019). We also restricted the analyses to wildfires 
meeting the high wind (i.e. U10 > 30 km h− 1) and low fuel moisture (MC 
<7%) conditions where the rule of thumb has shown to be most appli
cable (Cruz and Alexander, 2019). None of the wildfires used in the 
original formulation of the 10% rule of thumb (Alexander and Cruz, 
2006; Cheney et al., 2012; Anderson et al., 2015) were considered in the 
present analyses. 

Kilinc et al. (2012) and Fernandes et al. (2020) assigned wildfire data 
reliability scores for weather, fuel and fire behaviour characteristics as 
per Cheney et al. (2012) and Cruz et al. (2012). This is provided in 
Tables A1 and A2, respectively. Interpretation of the reliability scores is 
given in Table A3. 

2.4. Predicted fire spread rate data 

We applied the 10% rule of thumb to the U10 values in both datasets 
to produce estimates of R for each wildfire. We also used the predictions 
from the McArthur (1967) and Cheney et al. (2012) fire spread models in 
the Southern Australia dataset to understand how the rule of thumb 
predictions compare with those of current operational fire spread 
models under heightened fire spread potential conditions. Predictions 
for the McArthur (1967) model relied on an overall understorey fuel 
load comprised of surface, near surface, elevated and bark fuels. Similar 
analysis was not pursued for the BONFIRE dataset due to the absence of 
the necessary fuel information needed to apply the appropriate fire 
spread models. 

2.5. Statistics 

Model error predictions were quantified using the following statis
tics: mean absolute error (MAE), mean bias error (MBE), mean absolute 
percent error (MAPE), root mean square error (RMSE) and the ratio 
between the MBE and MAE, which we call the mean bias percent error 
(MBPE) (Willmott, 1982; Cruz et al., 2018). 

The MAE, expressed in the same units as the original data, is a 
quantity used to measure how close predictions are to the observed 
value. As the name suggests, the MAE is an average of the absolute error. 
The MBE describes the dispersion or spread of the residual distribution 
about the estimate of the mean. A positive value indicates an over- 
prediction trend while a negative value is an indication of an under- 
prediction trend. The MAPE is a very popular measure of the accuracy 
of a predictive model or system. It represents the summed differences 
between the individual predicted versus observed values divided by the 
observed value and expressed as a percentage. If a perfect fit is obtained, 
then the MAPE is zero. The MBPE provides a measure of the bias in 
relation to the MAE expressed as a percentage. 

The RMSE represents the standard deviation of the residuals (pre
diction errors); residuals are a measure of how far from the line of 
perfect agreement the data points lie. The RMSE is a measure of how 
spread out these residuals are. 

The analysis of the rule of thumb error was conducted separately for 
the Southern Australia and BONFIRE datasets, despite certain 
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commonalities, namely data from wildfires in Australian eucalypt for
ests. The data were not pooled together due to the different data 
collection methods, standards and overall data characteristics. We 
analysed differences in fire environment variables for subsets of datasets 
through unpaired two sample tests. The Shapiro-Wilk test of normality 
was used to determine if variables were normally distributed. For nor
mally distributed variables Student t-tests were used. For non-normal 
distributions the non-parametric Wilcoxon rank sum test was used. All 
statistical analysis was conducted using the software R (R Core Team, 
2019). 

3. Results 

3.1. Southern Australia dataset 

The original Southern Australia database consisted of 183 fire ob
servations in eucalypt forests. The dataset selected for analysis was 
reduced to 61 wildfire observations after removing fire runs with a 
duration of less than 1.0 h and cases of post-frontal passage type of fire 
propagation. Within those, a total of 30 fire runs had an estimated MC 
<7% and a measured U10 > 30 km h− 1. For this subset, the average rate 
of fire spread was 3.6 km h− 1, spanning a range of 0.8–8.0 km h− 1. 
Table 1 provides the basic statistics for the subset of data used in this 
study. The 10% rule of thumb predicted the dataset with a MAE of 1.75 
km h− 1, and a MBE of 0.89 km h− 1 (Table 2). 

Fig. 2 shows the rule of thumb predictions clustered around two 
different areas. There is a group of fires (n = 10) propagating with a 
forward rate of spread less than 2.0 km h− 1 that were characterized by a 
strong over-prediction bias. The remaining two-thirds of the data, with 
higher rates of spread, had predictions that mostly fell within the ±35% 
band. The wildfires in the over-predicted group were slower spreading. 
The Shapiro-Wilk test of normality showed MC, U10, fuel loads and fire 
front width in each subset of data (i.e. slower spreading wildfires with R 
< 2.0 km h− 1 vs faster spreading wildfires with R > 2 km h− 1) to not be 
normally distributed. The slower spreading wildfires were characterized 
by higher MC levels (mostly 5–6%, averaging 5.3%) than the dataset 
average of 4.4%. The Wilcoxon rank sum test indicated MC to be 
significantly higher in the slower spreading group than in the faster 
spreading group (p = 0.008). The same test found no statistically sig
nificant differences for wind speeds and fuel loads in the two groups (α 
> 0.05). Fire front width was larger in the faster spreading wildfires (4.3 
km) than in the slower spreading group of fires (1.6 km), with the 
Wilcoxon rank sum test finding the differences significant (p = 0.004). 
Considering only the wildfires spreading with a R > 2.0 km h− 1, the use 
of the rule of thumb resulted in an MAE of 1.04 km h− 1, MAPE of 22.4% 
and a MBE of 0.24 km h− 1. 

Predictions of rate of fire spread with the McArthur (1967) and 
Cheney et al. (2012) models yielded higher MAEs (2.12 and 2.19 km 
h− 1, respectively) than the rule of thumb, albeit showing distinct trends 
(Fig. 2). The McArthur (1967) model largely under-predicted the spread 
of the wildfires, with an MBE (− 2.03 km h− 1) of similar absolute 
magnitude to the MAE (Table 2), whereas the Cheney et al. (2012) 
model yielded a negligible bias (MBE of − 0.02 km h− 1). Both of these 

Table 1 
Summary of basic statistics for observed rate of fire spread (R), 10-m open wind 
speed (U10) and estimated fine dead fuel moisture content (MC) of the Southern 
Australia wildfire dataset (Kilinc et al., 2012) in Australian eucalypt forests 
meeting the study requirements (n = 30). Data distribution by state: Victoria 
(25); Western Australia (4); and South Australia (1).  

Variable Mean (st.dev.) Range 

R (km h− 1) 3.6 (2.01) 0.8–8.0 
U10 (km h− 1) 45.2 (12.3) 30–100 
MC (%) 4.4 (1.3) 2.5–6.2  

Table 2 
Summary of the evaluation statistics for predicted rate of fire spread models for 
the Southern Australia wildfire dataset (Kilinc et al., 2012) in Australian euca
lypt forests meeting the study requirements. MAE – mean absolute error; MBE – 
mean bias error; MAPE – mean absolute percent error; RMSE – root mean square 
error; and MBPE – mean bias percent error. Residuals are calculated as 
predicted-observed, with a negative MBE indicating an under-prediction.  

Rate of fire spread model MAE  
(km h− 1) 

MBE  
(km h− 1) 

MAPE (%) RMSE MBPE (%) 

Cruz and Alexander (2019) 1.75 0.89 101.0 2.11 51 
Cheney et al. (2012) 2.19 − 0.02 76.9 2.72 -1 
McArthur (1967) 2.21 − 2.03 60.0 2.95 − 92  

Fig. 2. Plots of (a) observed rates of wildfire spread in Australian eucalypt 
forests for the Kilinc et al. (2012) dataset meeting the study requirements versus 
predicted values according to the Cruz and Alexander (2019) 10% rule of 
thumb and the models of McArthur (1967) and Cheney et al. (2012) (the dashed 
lines around the line of perfect agreement indicates the ±35% error interval as 
per Cruz and Alexander, 2013) and (b) residual distribution as a function of 
observed rate of wildfire spread. 
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models produced more accurate predictions for the slower spreading 
fires (R < 2.0 km h− 1), but higher errors for the faster spreading ones 
(Fig. 2b). The Cheney et al. (2012) model over-predicted the rate of 
advance of all wildfires in the slower spreading group (Fig. 2b). 

3.2. BONFIRE dataset 

The BONFIRE database compiled by Fernandes et al. (2020) con
tained a total of 167 wildfire runs in non-grass fuels, with a run duration 
>1.0 h, not classified as post-frontal passage fire propagation, nor 
included in the datasets used to derive the rule of thumb (i.e. Alexander 
and Cruz, 2006; Cheney et al., 2012; Anderson et al., 2015) and not 
present in the Southern Australia dataset. Within that dataset, there 
were a total of 58 fire observations in conifer forests, eucalypt forests 
and shrublands that met the criteria of the MC <7% and U10 > 30 km 
h− 1. The basic statistics for this dataset are given in Table 3, including 
the distribution by geographic location. The R for these datasets aver
aged 4.0 km h− 1, with the distribution of this variable, MC and U10 not 
significantly different from the Southern Australia dataset. Tukey mul
tiple comparison tests indicated no significant differences between the R 
in the three broad vegetation/fuel types present in the dataset. Com
parable results were obtained for U10, but significant differences (p <
0.05) were observed for the MC. 

The application of the 10% rule of thumb resulted in a MAE of 1.70 
km h− 1 (Table 4) when considering the aggregate of the three vegeta
tion/fuel types, a value comparable to the one obtained for the Southern 
Australia dataset. The 10% rule of thumb predicted R values for the 
dataset with a MBE of 0.49 km h− 1 or 29% of the MAE (Table 4). Overall 
the most accurate predictions were obtained for the shrubland subset 
(MAE 1.54 km h− 1, MAPE 59.6%), followed by the conifer forest subset 
(MAE 1.55 km h− 1, MAPE 80.3%) and then the eucalypt forest subset 
(MAE 1.95 km h− 1, MAPE 89.3%) (Table 4). 

As with the Southern Australia dataset, the analysis shows a notable 
over-prediction bias for wildfires propagating with rates of spread <2.0 

Table 3 
Summary of basic statistics (mean, (standard deviation), [range]) for observed rate of fire spread (R), 10-m open wind speed (U10), estimated fine dead fuel moisture 
content (MC), and country of origin for the BONFIRE (Fernandes et al., 2020) wildfire dataset meeting the study requirements.  

Variable Conifer forestsa Eucalypt forestsb Shrublandsc Alld 

R (km h− 1) 3.9 (2.84) [0.6–12.5] 4.4 (3.09) [0.8–11.2] 3.7 (1.93) [1.1–7.5] 4.0 (2.70) [0.55–12.50] 
U10 (km h− 1) 45.6 (15.1) [30–80] 48.4 (12.0) [30–70] 40.2 (9.7) [33–73] 45.6 (12.9) [30–80] 
MC (%) 6.1 (0.65) [4.0–7.0] 3.4 (0.49) [2.6–4.5] 4.4 (1.57) [2.2–6.6] 4.6 (1.52) [2.0–7.0]  

a n = 21. Data distribution by country: Argentina (3); Australia (6); Canada (2); Greece (1); New Zealand (3); Portugal (2); Spain (2); and USA (2). 
b n = 22. Data distribution by country: Australia (21) and Portugal (1). 
c n = 15. Data distribution by country: Argentina (1); Australia (5); Portugal (5); Spain (2); and USA (2). 
d n = 58. Data distribution by country: Argentina (4); Australia (32); Canada (2); Greece (1); New Zealand (3); Portugal (8); Spain (4); and USA (4). 

Table 4 
Summary of evaluation statistics by fuel type for predicted rate of fire spread by 
the 10% rule of thumb for the BONFIRE dataset (Fernandes et al., 2020). MAE – 
mean absolute error; MBE – mean bias error; MAPE – mean absolute percent 
error; RMSE – root mean square error; and MBPE – mean bias percent error. 
Residuals are calculated as predicted-observed.  

Vegetation/fuel 
type 

MAE (km h− 1) MBE (km h− 1) MAPE (%) RMSE MBPE (%) 

Conifer forests 1.55 0.63 80.3 1.88 41 
Eucalypt forests 1.95 0.48 89.3 2.24 26 
Shrublands 1.54 0.28 59.6 1.85 18 
All 1.70 0.49 78.1 2.01 29  

Fig. 3. Plots of (a) observed rates of wildfire spread by vegetation/fuel type for 
the BONFIRE dataset (Fernandes et al., 2020) meeting the study requirements 
versus predicted values according to the Cruz and Alexander (2019) 10% rule of 
thumb (the dashed line around the line of perfect agreement indicates the 
±35% error interval as per Cruz and Alexander, 2013) and (b) residual distri
bution as a function of observed rate of wildfire spread. 
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km h− 1 (Fig. 3). A large proportion of the fires spreading with an R 
between 2.0 and 8.0 km h− 1 were predicted within the ±35% error 
prediction band. The rule of thumb tended to under-predict fires 
spreading with an R > 7.5 km h− 1, although errors for these fires were 
around the − 35% threshold (Fig. 3). 

4. Discussion 

4.1. Fire spread prediction error 

The spread of a wildfire flame front comprises very dynamic phe
nomenon, influenced by a number of variables and processes. Its pre
diction in an operational setting, over a period of hours to days, is 
fraught with uncertainty associated with the limitations of our under
standing of the controlling processes, difficulty in accurately estimating 
a model’s input variables, compounding effects of errors and the obvious 
difficulty in describing the chaotic nature of fluids in a turbulent and 
constantly changing environment (Albini, 1976). 

Catchpole et al. (1993) report that measured rates of fire spread in 
replicated (i.e. same environmental conditions) laboratory experimental 

fires conducted under constant wind speed conditions agreed to within 
±20% (Fig. 4A). This result can be seen as a benchmark with respect to 
fire spread variability. Spreading fires will exhibit notable variability 
even when burning in a controlled environment under homogeneous 
and identical conditions. Outdoor fires, but especially wildfires, will 
obviously be characterized by a higher variability given the transient 
and dynamic nature of boundary layer meteorology, plus the spatial 
variability in fuel characteristics (e.g. structure, moisture) and terrain (e. 
g. slope steepness, aspect or slope exposure). 

The most accurate results obtained with empirical models in a field 
setting are for model predictions against the datasets used in their 
development, with MAPEs varying between 20 and 35% (Cheney et al., 
1998, 2012; Fernandes, 2001) (Fig. 4B). Prediction errors naturally in
crease when the models are applied to independent experimental fire 
(Fig. 4C) or wildfire (Fig. 4D) datasets. In these cases, the MAPE has 
been characterized by an interquartile range varying from 50 to 70% for 
experimental fire datasets (Cruz and Alexander, 2013) and from 54 to 
120% for wildfire data (Alexander and Cruz, 2006; Cheney et al., 2012; 
Kilinc et al., 2012; Anderson et al., 2015). The main reason for the error 
increase in the latter dataset is due to the large uncertainty in spread rate 
measurements, model inputs and the natural unaccounted variability in 
the fire environment associated with large wildfire runs (Cruz and 
Alexander, 2013, 2019; Coen et al., 2018). 

Considering the spread of fires under critical fire weather conditions, 
our analysis was based on a broader dataset (n = 88) than the original 
work by Cruz and Alexander (2019) that included only 24 wildfire runs 
(out of 118 observations) within the constraints of MC <7% and U10 >

30 km h− 1. The results obtained by the simple 10% rate of spread rule of 
thumb as analysed in the present study, with the MAPE varying between 
60 and 101% (Tables 2 and 4), is, first and foremost, indicative of the 
strong control wind speed alone exerts on landscape-scale fire propa
gation under dry fuel conditions. This despite the uncertainty in the use 
of measured wind speed data as being representative of the conditions 
driving a wildfire some distance away from the measurement location. 

As observed in the analysis of Cruz and Alexander (2019), the 
percent error associated with the rule of thumb predictions decreases 
substantially with the increase in R. The MAPE varied between 22 and 
34% when considering wildfires that were propagating with an R > 2.0 
km h− 1, the wildfires that are most dangerous from the point of view of 
community and fire-fighter safety. This error is on par with the error 
obtained by empirical-based fire spread models when assessed against 
their original datasets with in situ accurate measurements of the fire 
environment (e.g. Cheney et al., 1998; Fernandes, 2001). 

The results presented in Figs. 2 and 3 raise the question of why does 
the 10% rule of thumb work so well under certain conditions and not so 
well in others? The analysis showed a substantial over-prediction for 
wildfires observed to spread with an R < 2.0 km h− 1, independent of the 
dataset. A similar over-prediction bias for wildfires in this range of 
observed rate of spread was noted in the original analysis by Cruz and 
Alexander (2019). In the Southern Australia related dataset, this bias 
was related to fireline width and time of day (mostly early-to mid-
afternoon fire runs). This hints at the notion that early afternoon con
ditions reflect the fact that longer timelag fuels (Nelson, 2001) are not 
yet fully available for combustion and the possible impact of effective 
suppression (Plucinski, 2019a, 2019b) in some areas around a wildfire’s 
perimeter, could explain the smaller fireline width and the lower 
observed rates of fire spread relative to the 10% rule of thumb expec
tation. Unfortunately, the BONFIRE dataset did not have the detail 
necessary to further explore this issue. 

These results highlight some of the limitations of the 10% rule of 
thumb, namely that its best accuracy might be restricted to lower MC 

Fig. 4. Error associated with fire spread variability and prediction as quantified 
in different studies: A – replicability of fires conducted under fixed and 
controlled conditions in a wind tunnel (Catchpole et al., 1993); B – range in 
mean absolute percent error (MAPE) obtained when empirically derived models 
are used to predict the original datasets in grasslands (Cheney et al., 1998), 
shrublands (Fernandes, 2001), conifer forests (Cruz et al., 2005; Fernandes 
et al., 2009) and eucalypt forests (Cheney et al., 2012); C – MAPE for studies 
within the interquartile error range (n = 23) where fire spread models were 
evaluated against independent experimental fire data analysed by Cruz and 
Alexander (2013); D - MAPE found for studies evaluating fire spread models 
against independent wildfire data (Alexander and Cruz, 2006; Cheney et al., 
2012; Kilinc et al., 2012; Anderson et al., 2015); E − range in MAPE obtained 
when applying the Cruz and Alexander (2019) 10% rule of thumb to the 
Southern Australia (Kilinc et al., 2012) and BONFIRE (Fernandes et al., 2020) 
datasets meeting the present study requirements; and ER>2 – range in MAPE 
obtained when restricting the data in E to wildfires with observed rates of 
spread >2.0 km h− 1. 
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levels than proposed by Cruz and Alexander (2019). In their analysis, it 
was suggested that the rule of thumb worked best below an MC of 7%, 
while the current analysis with a broader dataset indicates that the most 
accurate results are obtained with a MC level up to 5%. 

The analysis of the BONFIRE related dataset identified an under- 
prediction trend for wildfires spreading with an R > 7.5 km h− 1. 
There were eight fires in this group, with seven under-predictions, six of 
them with under-predictions varying between − 29% and − 38%, and 
one of them with a − 55%. A closer review of these wildfires reveals a 
prevalence of documented long-range spotting distances in most of 
them, namely the 1983 Deans Marsh fire (10 km spotting - Rawson et al., 
1983) and the East Trentham fire (10–12 km - Rawson et al., 1983; 
Storey et al., 2020b) in Victoria, Australia, the 1936 Galatea Creek Fire 
in Alberta, Canada, (5.6 km - Fryer and Johnson, 1988), and the 1983 
Mount Muirhead fire in South Australia (15–20 km - Keeves and 
Douglas, 1983). 

Long-range spotting is a highly stochastic process linked to a number 
of variables such as the size of the active fire area, fuel type(s), terrain 
roughness, wind speed levels and wind exposure (Page et al., 2018; 
Storey et al., 2020a). The processes are heuristically understood, with 
long-range spotting associated with wind-driven wildfires typically 
linked to fires accelerating in wind exposed upslope runs. This results in 
localised increases in energy release, an increase in the number of fire
brands generated, and pulses in upward momentum in a wildfire’s 
plume (Kerr et al., 1971; Luke and McArthur, 1978; McCarthy et al., 
2018). These periodic pulses are able to transport firebrands higher into 
the wildfire’s plume where upper levels winds can then maximise their 
downwind transport (Albini et al., 2012). However, not all upslope fire 
runs will lead to the long-range spotting as observed in the wildfires 
mentioned above. 

The results obtained seem to indicate that if the fire environment is 
conducive to the occurrence of long-range spotting distances, then the 
10% rule of thumb will likely under-predict the overall fire spread dis
tance. In our evaluation, the level of under-prediction was between 30 
and 40%, which is fairly acceptable given the uncertainty in the input 
variables and the stochasticity of the process, although higher under- 
prediction errors cannot be ruled out. The fact that the 10% rule of 
thumb predicted well wildfires driven by winds of 60–70 km h− 1 (with 
gusts up to around 100 km h− 1) and characterized by long-range spot
ting with errors up to 40%, is in itself a very interesting result. 

4.2. Fire spread prediction error - operational implications 

As simulations of fire spread models are used to support decision 
making during ongoing wildfires, it is important that the users of such 
information understand the uncertainty in fire spread predictions, either 
due to errors associated with inaccurate inputs or model limitations 
(Albini, 1976). Despite the complexity of wildfire phenomena, the un
knowns in our scientific understanding of fire behaviour and the chaos 
associated with a wildfire approaching the WUI, to the individuals 
making decisions regarding the safety of communities or fire-fighters in 
the field, the questions are very simple: where is the wildfire at the 
moment and what is its rate of spread and intensity (Luke and McArthur, 
1978)? Will the wildfire reach a particular community or pre-defined 
trigger point and at what time will it do so (Cova et al., 2005; Ramirez 
et al., 2019)? The decision maker will need to understand the uncer
tainty and potential bias associated with the fire spread prediction to 
make better decisions and tailor the actions to be taken. 

Fig. 5 summarises the impact of a rate of spread prediction error on a 

hypothetical example of a wildfire starting 6.0 km upwind of a com
munity. The example assumes that 0.5 h after ignition, the wildfire is 
spreading at 3.0 km h− 1. For the sake of simplicity, the wildfire is 
assumed to have been detected the moment following ignition and that 
in the early stages of fire propagation (i.e. during its build-up phase), the 
fire was spreading at the pseudo steady-state rate of spread (Luke and 
McArthur, 1978). The example considers the wildfire to impact the 
community 2.0 h after ignition and that a fire behaviour analyst pro
duced a forecast of fire spread 0.5 h after the ignition was detected and 
the local authorities act upon this information to immediately release a 
warning to the general public. If a correct R prediction of 3.0 km h− 1 is 
made (i.e. 0% error) and an evacuation warning is issued, then the 
population has 1.5 h to act before the wildfire impacts the community. 
Over-predictions will result in a reduction in the perceived time to 
impact (i.e. the community will think that they have less time to act than 
in reality). With an increase in an over-prediction, the predicted time to 
impact decreases to a level that might lead to a negative outcome (area A 
in Fig. 5), e.g. emergency services decide that the time for a community 
to safely evacuate is too short and thus do not issue an evacuation 
warning. This is clear for the 100% over-prediction error (a R prediction 
of 6.0 km h− 1), where a predicted time to impact of 0.5 h might lead to a 
change from evacuation to a “shelter-in-place” warning. Such advice 
against evacuation when time does allow for its safe implementation can 
potentially put members of the general public at undue risk. 

Under-prediction biases of wildfire rate of spread can also have a 
detrimental, but distinct, impact on the decision-making process. Under- 
predictions will result in an erroneous over-estimate of the time to fire 
impact, potentially removing the necessary sense of urgency (area B in 
Fig. 5). For example, the largest under-prediction in Fig. 5 suggesting 
6.0 h to impact might delay any warnings to the general public during a 

Fig. 5. Effect of fire spread model prediction percent error in the predicted 
time to impact for a hypothetical wildfire impacting a community 1.5 h after a 
real-time fire behaviour prediction is completed. A and B are regions where the 
magnitude of the error can result in negative impact on the decision making. 
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critical time period. Considering 1.0 h as a time scale relevant for 
community evacuation (Li et al., 2019), errors up to 33% are not likely 
to have a detrimental impact on public safety. It is errors above this 
threshold, and in particular under-prediction errors, that can result in a 
lack of timely and appropriate warnings leading to the most detrimental 
consequences (Cheney, 1981; Teague et al., 2010). 

4.3. Performance of the 10% rule of thumb against five notable recent 
wildfire disasters 

The recent past is populated with some of the deadliest single 
wildfire events on record (Box 1). Common features of these wildfires 
were, for example: a new ignition starting the deadly fire run (with the 
exception of the 2017 Arganil-Seia fire), strong winds leading to fast 
spread rates, impact into communities within a few hours of their 

Box 1 
Synopsis of recent notable wildfire events around the world characterized by rapid spread and a significant number of human fatalities. See 
Table 5 for further details and associated references. 

2009 Kilmore East fire, Victoria, Australia. 

The Kilmore East fire started at approximately 11:45 as a result of arcing from a broken power line. The fire, burned approximately 100 000 ha in 
less than 12 h, causing 121 fatalities and injuring 232 people (Teague et al., 2010; Cruz et al., 2012). The fire had two distinct spread periods, 
with the first being a wind driven run pushed by hot dry winds averaging 28–69 km h− 1 (Fig. 1b), followed by the second period characterized by 
the passage of a cold front at 18:00 that turned a 55 km long flank fire into a headfire. Focusing on the pre-frontal passage period, which caused 
58 of the fatalities, the fire travelled 55 km through predominantly forest fuels in approximately 6 h, for an average rate of spread of 9.2 km h− 1. 
This extraordinary fast rate of spread was associated with profuse spotting characteristic of high-intensity fires spreading in eucalypt forests. 

2017 Tubbs fire, California, USA. 

The Tubbs fire was caused by an electrical system failure at 21:43 on October 8, 2017 (Koslowsky, 2019). Pushed by strong, downslope diablo 
winds (Bowers, 2018; Coen et al., 2018; Smith et al., 2018), the fire impacted several communities in the first 4–5 h of fire propagation following 
ignition, causing 22 fatalities and the destruction of 5636 structures (Nauslar et al., 2018). Over this period of time, average wind speeds 
(measured at 6.1 m) in weather stations in the vicinity of the fire ranged from 32 km h− 1 at Santa Rosa in the valley in the vicinity of the fire’s 
path to 70 km h− 1 on a ridgeline about 20 km northwest of the fire. Rates of spread as the fire propagated towards Santa Rosa between 23:00 on 
October 8 and 02:00 on October 9 ranged between 2.98 and 5.24 km h− 1, for an overall average of 3.9 km h− 1 for the approximate 4.0 h run of 
16.7 km. 

2017 Arganil-Seia fires, central Portugal. 

The Arganil-Seia fire complex caused 17 fatalities, making it the deadliest of those fires starting on October 15 in Portugal under the influence of 
Ophelia’s tropical storm winds and the associated advection of warm and dry air from northern Africa (Guerreiro et al., 2018). The fire complex 
comprised four separate ignitions that merged together, burning 48 462 ha, half of which was occupied by pine forest. However, the fire run 
referred to in Table 5, that started at 12:28 was the result of a rekindling of part of the initial fire growth from the previous week. This run 
initially advanced with an average spread rate of 1.8 km h− 1, followed by a sustained propagation of 4.5 km h− 1 between 15:00 and 17:00 as 
wind speeds increased. Rate of spread was substantially reduced as the fire encroached into the wildland-urban interface of the Oliveira do 
Hospital township, and increased subsequently, with an average spread rate of 5.4 km h− 1 between 20:00 and 24:00. This later period was 
marked by prolific spotting in a more fragmented forest landscape. 

2018 Mati fire, Attica region, Greece. 

The Mati fire started at 16:41 on July 23, 2018. Strong winds, ranging between 32 and 56 km h− 1 in an exposed mountainside AWS site west of 
the ignition area, and 24–30 km h− 1 at a coastal AWS site (Table 5) lead to a fast downslope run over complex topography toward several seaside 
communities, with the wildfire reaching the sea at approximately 18:30. This run resulted in 102 fatalities, with the wildfire also impacting 1650 
homes within a final burned area of 1431 ha (Goldammer et al., 2019; Xanthopoulos and Athanasiou, 2019; Lagouvardos et al., 2019). 
Reconstruction of the wildfire propagation indicated an overall rate of fire spread of 2.6 km h− 1 from the ignition point to the sea shore (a 
distance of 5.2 km), although the flame front was documented to be spreading at 4.0 km h− 1 over the latter half of its run, with peak spread rates 
of up to 5.0 km h− 1 over shorter distances. 

2018 Camp fire, California, USA. 

The Camp fire was ignited by a faulty electric transmission line at 06:33 on November 8, 2018 near Pulga, California (Gee and Anguiano, 2020). 
Driven by strong, foehn winds, the wildfire spread rapidly in open chaparral shrublands and conifer forest fuel types during its first morning of 
activity, severely impacting several communities, including the town of Paradise, leading to 86 fatalities and the destruction of more than 18 
000 buildings. Detailed weather analysis by Brewer and Clements (2019) indicate that the average measured surface wind speeds (6.1 m height) 
in the vicinity of the fire perimeter varied between 18 and 54 km h− 1 with gusts up to 94 km h− 1. These authors also suggest a strong gradient of 
wind speed with height with substantially higher wind speeds aloft contributing to long-distance ember transport (spot fires were observed 
occurring 1.5 km ahead of the main flame front. The Landsat 8 image of the wildfire taken at 10:45 (Fig. 1c) shows the leading edge of the main 
fire’s footprint covering a distance of 16.9 km from the point of ignition. This yields a rate of fire spread of 4.0 km h− 1. If one considers the 
further extent of a large spot fire located 20.1 km from the ignition point observed in the satellite image, the wildfire would be considered to 
have advanced at a rate of 4.8 km h− 1 over this initial 4:12 h period of spread. The headfire spread a further 7.2 km by around 18:00, resulting in 
an average rate of spread of 1 km h− 1 for the period from 10:45 to 18:00.  
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ignition and communities not warned of the impending danger until it 
was too late to evacuate to safe areas (e.g. Xanthopoulos and Athana
siou, 2019). For most of these wildfires, the lack of a formal warning to 
the communities prior to fire’s impact was due in part to the lack of 
situational awareness and an under-appreciation of the fire spread rate 
potential by civil protection/emergency response agencies (Teague 
et al., 2010; Goldammer et al., 2019). 

In complementing the analyses presented in the previous sections, 
Table 5 provides some additional details on the characteristics of the 
wildfires listed in Box 1. A feature of the measured wind data reported in 
Table 5 (note the different standards for the measurement height above 
ground) for these wildfires is the broad range in the average wind speeds 
for each of the fires (Fig. 6). Winds were measured at different locations 
near the vicinity of these wildfires or within the final fire perimeter. 
Weather stations situated on ridgelines or on windward slopes, generally 
resulted in the upper range in wind speeds whereas stations located at 
lower elevations, where the impacted communities typically were, 
yielded a lower range in wind speeds. These results highlight some of the 
inherent issues of predicting the spread of wildfires advancing across 
complex topography. 

Detailed wind studies such as those carried out by Coen et al. (2018), 
Brewer and Clements (2019), and Lagouvardos et al. (2019), for 
example, further highlight the spatial heterogeneity in landscape-scale 
winds and the complexities associated with the strong wind events 
linked to some of the catastrophic wildfires described in Box 1 and 

Table 5. This also calls attention to the fact that the wind speed data 
given in Tables A1 and A2 should be seen as indicative, not necessarily 
as a precise value representative of a large wildfire run. 

The 10% rule of thumb yielded estimates that approximate the 
observed rates of spread of the wildfire disasters (Fig. 6; the wind speed 
bar can be read as the 10% rule of thumb R prediction in the rate of fire 
spread axis label). The application of the rule of thumb under-predicted 
the spread rate for the 2009 Kilmore East fire (− 26% error when 
considering the maximum wind speed and the overall rate of fire 
spread), a result linked to the occurrence of long-range spotting during 
this fire’s major run (Cruz et al., 2012), and over-predicted the 
maximum spread rate for the 2017 Tubbs fire (35% error), which are 
clearly errors within an acceptable range for wildfire propagation pre
diction. Errors for the other wildfires contained in Table 5 were smaller 
with the range in the predicted rate of spread based on the range in 
observed wind speeds overlapping the range in observed rate of fire 
spread (Fig. 6). 

We need to emphasize that these results should be seen as qualitative 
and only as an illustration of the usefulness of the 10% rule of thumb as a 
first approximation in situations where there is no particular fire 
behaviour prediction know-how or there is no time to apply more 
comprehensive and accepted fire behaviour prediction methods (e.g. 
Rothermel, 1983, 1991; Plucinski et al., 2017; Taylor and Alexander, 
2018). The quick usage of the rule of thumb in these situations, when 
time is of the essence, leaves more time for undertaking other 

Table 5 
Summary regarding the details on the occurrence, fatalities, behaviour and environmental conditions associated with five notable wildfire disasters globally in recent 
times. Ta – ambient temperature; RH – relative humidity; MC – fine dead fuel moisture content; U10 – 10-m open wind speed; and R – rate of fire spread including that 
predicted by the 10% rule of thumb. For further details refer to Box 1.  

Fire name and location Date Number of  
fatalities 

Duration  
of run (h) 

Time to  
bulk of  
fatalities (h) 

Ta (◦C) RH (%) MC (%) U10 (km h− 1) Observed 
R(km h− 1) 

Predicted 
R (km h− 1) 

Kilmore East, Australia February 07, 2009 121a 6 4–5 45 8 5 28–69 4.1–9.2 2.8–6.9 
Tubbs, USA August 10, 2017 22 4 3–4 33 7 5 32–70 3.0–5.2 3.2–7.0 
Arganil-Seia, Portugal October 15, 2017 17 2 4–5 33 17 6 19–49 4.4-4.6 1.9–4.9 
Mati, Greece July 23, 2018 102 2 2 38 17 5 32–52 2.6–5.2 3.2–5.2 
Camp, USA November 08, 2018 86 4 3–4 11 19 8 21–62 4.0–4.8 2.1–6.2 

Kilmore East fire observations: U10 range based on the two closest Australian Bureau of Meteorology automated weather stations at Kilmore Gap (near the ignition 
point, characterized by higher wind speeds) and Coldstream (a few km from the end of the considered run, characterized by lower wind speeds). Other environmental 
data and rate of fire spread are from Cruz et al. (2012). 
Tubbs fire observations: Wind speeds measured at 6.1-m height at Santa Rosa (lower wind speeds) and Hawkeye (higher wind speeds) automated weather stations 
(AWS) (https://mesowest.utah.edu) were converted to U10 values as per Andrews (2012). The Santa Rosa AWS is located in the valley near the vicinity of the fire’s 
path. The Hawkeye AWS is located along a ridgeline about 20 km northwest of the fire (Coen et al., 2018). Ta, RH and MC are representative of the Santa Rosa AWS. 
Rates of fire spread derived are from Watkins et al. (2017) and Monedero et al. (2019) per data supplied by the California Department of Forestry and Fire Protection. 
Arganil-Seia fire observations: Wind speeds measured in the Fajão wind farm at a 80 m height, located on a ridgeline 12 km south of the fire run. 10-min observations 
from 37 anemometers were averaged for the fire run period and converted to U10 values based on a logarithmic wind profile (Tennekes, 1973) assuming a 0.4-m surface 
roughness. High atmospheric instability implied an underestimation by the conversion but it is expected that the corresponding U10 at the fire location would be 
somewhat lower, given the 300-m elevational difference. Rates of fire spread are from Guerreiro et al. (2018). 
Mati fire observations: Wind speed data is the average for the period of the fire run for the Rafina AWS (coastal site, lower wind speeds) and Pentelli (mountain site, 
higher wind speeds) automated AWS (Lagouvardos et al., 2017). The Pentelli AWS is located at a mountain top, where air flow is compressed, and winds accelerate. 
The Rafina AWS is located 2 km south of where the fire reached the sea. The anemometer at this station is located at a 3-m height atop a building (flat roof). A 
conversion to U10 for this exposure is unclear. The values given above have been adjusted by multiplying the observed values by 1.15 as per Andrews (2012). It is 
expected that the corresponding U10 values at the Rafina AWS would be somewhat higher than estimated, as visual observations in the area suggested a Beaufort scale 
rating of 7 (~61 km h− 1). Other environmental data is representative of Rafina AWS observations. Rates of fire spread are from Goldammer et al. (2019) and Xan
thopoulos and Athanasiou (2019). 
Camp fire observations: Wind speed range as reported by Brewer and Clements (2019) from data collected in the vicinity of the fire perimeter. U10 values incorporates 
correction factor for 6.1-m to 10-m open wind winds as Andrews (2012). Rates of fire spread based on distance from ignition point to fire perimeter location at 10:45 a. 
m. based on Landsat imagery (Fig. 1c). 
a Of the total 121 fatalities, 51 occurred during the main wind-driven fire run with the remaining 70 associated with the post-frontal passage fire propagation (Cruz 
et al., 2012). 
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time-critical actions, including informing the general population. 
The strong control that wind speed exerts on the propagation of 

wildfire conflagrations, as shown in the analysis of wildfire case studies, 
highlights the importance of accurate wind forecasting (Coen et al., 
2018; Lac et al., 2018; Lagouvardos et al., 2019) and its fine scale spatial 
modelling (Wagenbrenner et al., 2016; Filippi et al., 2018), especially in 
complex terrain, to guide effective decision making and issuing of 
warnings during extreme burning conditions. 

4.4. On the wind speed effect on fire propagation 

The error analysis resulting from the evaluation of the 10% rule of 
thumb against independent data has provided additional clues as to the 
influence of wind speed on wildfire propagation rates. We noted in 
section 4.2 that a group of the slower spreading fires (i.e. R < 2.0 km 
h− 1) were found to be over-predicted by the 10% rule of thumb. 
Although we did not apply the 10% rule to fires spreading with U10 
levels <30 km h− 1 or MC >7% in the present study, the analysis by Cruz 
and Alexander (2019) found an over-prediction bias for wildfires 
spreading under these conditions. In contrast, the low percent errors 
produced for wildfires with observed R levels >2.0 km h− 1, hints at the 
overarching control wind speed exerts on the forward speed of wildfires 
when fine dead fuels are critically dry and wind speeds are strong. The 
fit statistics do not leave much room for other influences, be it a forest or 
shrubland vegetation/fuel type, topographic effects or fire-atmosphere 
interactions, when wildfires are spreading under these conditions. 

Potter (2002) suggested that under strong wind conditions, the 
convective plume tilt of a wildfire along with the transport of the plume 
condensation area downwind, will lead to a decoupling between the 
advancing flame front of the fire at the surface and the plume above. 

This will limit dynamic feedbacks, such as downdrafts or return flows on 
the advancing flame front that may arise from the moisture latent heat 
release in the fire’s plume. In these situations, wind speed and fuel 
dryness control a wildfire’s spread rate. 

The observed over-prediction for the group of slower spreading 
wildfires mentioned above, could arise from fire-atmosphere in
teractions. In situations with lower wind speeds, the fire’s convection 
column is more vertical than in the strong wind case and coupling be
tween the upper levels of the plume and the surface can occur (Byram, 
1959; Rothermel, 1991). Air entrainment due to vertical plume devel
opment in distinct layers of the atmosphere coupled with moisture 
condensation will feedback into a free-burning fire as the vertical mo
tions change the near-fire surface winds (Potter, 2002). These feedbacks 
can result in periodic or occasional strong downdrafts winds that can 
cause sudden changes in fire behaviour (Potter, 2005; Coen, 2011), 
occasionally with possible life-threatening consequences (e.g. Roth
ermel, 1991; Goens and Andrews, 1998). Despite the occasional extreme 
flows associated with dynamic feedbacks, the strong entrainment into 
the fire’s plume and upward motions will, when considering the time 
scales used in our study (i.e. greater than 1 h), result in overall lower 
horizontal winds at the surface. This might possibly explain in part the 
observed fire spread rates being lower than expected based on the rule of 
thumb. 

5. Conclusions 

We conducted an examination of the predictive ability of the Cruz 
and Alexander (2019) 10% rule of thumb to estimate a wildfire’s for
ward rate of fire spread using two independent datasets. This simple rule 
of thumb aims to provide first approximations of wildfire propagation 
for situations where there is little or no time to apply more compre
hensive and accepted fire behaviour prediction methods. The rule of 
thumb was shown to work well, with overall MAPEs between 80 and 
100% comparable to other model evaluation studies based on wildfire 
data. The analysis showed the rule of thumb to work best for 
fast-spreading wildfires (R > 2.0 km h− 1). For these cases, the MAPE 
varied between 22% and 34%, a result on par with error statistics ob
tained when evaluating empirical-based fire spread models against the 
data used in their development. 

Our analysis showed that the range of conditions where the rule of 
thumb worked best is possibly more restrictive than originally thought. 
We found the rule to be most reliable under strong wind (U10 > 30 km 
h− 1) and dry fine fuel (MC <5% rather than <7%) conditions typically 
associated with fast-spreading wildfires. It is these types of fires that can 
surprise communities and emergency response agencies due to their 
high potential spread rates. The 10% rule of thumb is relevant when 
landscape-scale dryness is conducive to major wildfire outbreaks – i.e. 
low moisture content levels for live fuels and dead fuels with long 
timelag response (e.g. deep duff layers and large-diameter coarse woody 
debris). 

Although the focus of the present work was to evaluate the 10% rule 
of thumb against wildfire data, the analysis also provided insight into 
fundamental properties of fires burning under high fire spread potential. 
Despite the uncertainty and variability in the data, the trends are clear – 
wind speed has an overwhelmingly dominant effect on the spread rate of 
wildfires when fuels are dry and the wind is strong. Insight into the 
processes and variables with strong influence on large-scale fire propa
gation can only arise from the analysis of wildfire data, rather than 
experimental fires, field or laboratory, or relying solely on simulation 

Fig. 6. Temporal and spatial range in reported forward rate of spread and 10-m 
open wind speed for five recent wildfire disasters involving large numbers of 
human fatalities. See Box 1 and Table 5 for a brief description of each wildfire 
and associated environmental details. 
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modelling. Recent research into spot fire controls (Page et al., 2018; 
Storey et al., 2020a), rate of fire spread in mountain pine beetle-killed 
stands (Perrakis et al., 2014) and whole fire-atmosphere processes 
(Dowdy et al., 2017; Brewer and Clements, 2019; McCarthy et al., 2019) 
are examples of new insights into fire dynamics based on wildfire data 
that can help us better understand wildfire propagation and guide future 
fire behaviour modelling efforts. 

Advances and deployment of remote sensing technology, better 
mapping of vegetation and its structure at landscape scales and more 
accurate measurement of weather variables have created opportunities 
to reduce the uncertainty associated with the quantification of wildfire 
propagation for research studies. These data sourcing techniques will in 
turn lead to improvements of our understanding of fire dynamics, model 
calibration and more accurate forecasting of wildfire propagation. 

On a concluding note, the evaluation of a fire behaviour model or 
guide constitutes a continuing practice (Watts, 1987). In this regard, we 
plan to continue to add to the Southern Australian and BONFIRE data
bases which will allow for the periodic evaluation of the 10% rule of 
thumb and other fire spread models. 
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Appendix 

Table A1 
Date, fire name, fire run time interval, weather conditions, fuel loads, fire behaviour characteristics, and reliability scores for the Southern Australia wildfire dataset 
(Harris et al., 2011; Kilinc et al., 2012). The weather data, and in particular U10, should be seen as indicative, not a precise value for the fire run.  

Calendar date Fire name Fire spread  
time interval 

T 
(◦C) 

RH 
(%) 

MC 
(%) 

U10 (km h− 1) R (km h− 1) Fire width 
(km) 

Surface fuel 
load  
(kg m− 2) 

Total fuel 
load  
(kg m− 2) 

Reliability:  
weather/ 
fuel/Ra 

January 16, 1962 Daylesford 21:30–22:30 33 17 4.2 37 1.2 1.6 1.4 2.1 3/3/3 
April 4, 1978 Gervasse 16:00–17:30 28 29 5.8 100 8 3.1 0.4 0.4 3/3/3 
April 4, 1978 Maranup Ford 11:00–12:00 28 29 5.8 40 5.4 2.0 0.4 0.4 3/3/3 
February 16, 1983 Otways 16:00–17:00 41 4 2.5 44 4.5 3.7 1.7 3.0 3/3/4 
February 16, 1983 Otways 17:00–18:00 41 5 2.6 44 3.7 5.6 1.6 3.0 3/3/4 
February 16, 1983 Otways 18:00–19:30 41 5 2.6 39 5 10.0 1.6 3.0 3/3/4 
February 16, 1983 Otways 20:00–21:00 41 5 2.6 47 3.7 11.3 1.1 2.4 3/3/4 
February 16, 1983 Cockatoo 20:00–21:05 41 5 2.6 47 0.8 0.4 1.1 1.8 2/3/2 
February 16, 1983 Mt Lofty 13:50–15:10 40 10 3.3 41 3.4 1.4 0.7 1.2 3/4/3 
January 14, 1985 Anakie 14:40–15:40 42 7 2.9 37 5.9 4.4 0.7 1.1 2/2/2 
January 8, 1994 Springwood 13:00–15:30 34 20 4.6 41 3 1.1 2.0 2.7 3/4/5 
January 8, 1994 Springwood 16:00–17:30 36 18 4.3 43 2.8 3.3 2.0 2.7 3/4/5 
December 2, 1998 Linton 13:00–14:00 28 26 5.5 41 0.8 0.4 1.8 3.0 2/3/2 
December 2, 1998 Linton 16:15–18:00 29 23 5.1 30 0.9 1.0 1.7 2.8 2/3/2 
March 12, 2006 Riley Road 15:00–17:39 36 9 3.2 33 2.5 1.1 1.7 2.8 3/3/3 
December 14, 2006 Coopers Creek 15:00–16:00 35 9 3.2 48 6 2.7 1.8 2.9 3/3/3 
December 14, 2006 Coopers Creek 16:00–18:00 27 25 5.4 46 6.1 14.5 1.8 2.9 3/3/3 
January 21, 2006 Century Track 16:30–18:30 41 18 4.2 39 4.4 2.8 1.7 2.8 3/3/3 
February 7, 2009 Bunyip 13:00–14:00 43 10 3.2 46 4.7 2.0 1.0 2.3 2/3/3 
February 7, 2009 Kilmore East 17:00–18:00 41 10 3.2 46 5.8 6.9 1.3 2.4 2/3/3 
February 7, 2009 White Timber Spur 13:30–15:00 25 31 6.1 61 1.7 1.1 1.5 1.9 3/3/3 
February 7, 2009 White Timber Spur 15:00–16:30 27 26 5.5 55 1.6 1.4 1.4 1.8 3/3/3 
February 7, 2009 White Timber Spur 16:30–17:30 27 24 5.2 46 6.7 1.8 1.4 1.8 3/3/3 
February 7, 2009 White Timber Spur 17:30–18:30 27 25 5.4 41 5.1 3.1 1.3 1.6 3/3/3 
February 7, 2009 White Timber Spur 18:30–19:30 26 26 5.5 52 4.9 3.9 1.2 1.6 3/3/3 
February 7, 2009 White Timber Spur 19:30–20:30 25 27 5.6 50 1.9 4.3 1.1 1.5 3/3/3 
February 7, 2009 White Timber Spur 20:30–22:00 25 29 5.9 48 1.4 5.2 1.1 1.5 3/3/3 
February 6, 2011 Roleystone- 

Kelmscott 
13:30–14:30 23 31 6.2 43 1.7 0.2 1.4 1.8 2/3/5 

February 6, 2011 Roleystone- 
Kelmscott 

14:30–15:30 24 29 5.9 39 1.4 0.6 1.4 1.8 2/3/5 

February 1, 2011 Tostaree 13:00–16:00 39 13 3.6 31 3.8 1.5 1.9 3.0 3/3/3 
aSee Table A3.  
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Table A2 
Date, fire name and country, vegetation type, weather conditions, rate of fire spread, reliability scores, and fuel loads for the BONFIRE dataset (Fernandes et al., 2020). 
The weather data, and in particular U10, should be seen as indicative, not a precise value for the fire run.  

Calendar date Fire name, country Vegetation/ 
fuel type 

T 
(◦C) 

RH 
(%) 

MC 
(%) 

U10 (km h− 1) R (km h− 1) Fine fuel load 
(kg m− 2) 

Reliability: 
weather/ 
fuel/R a 

Source 

August 11, 2006 Serra da Ossa, 
Portugal 

Forest - eucalypt 34 15 4.0 37 2.5 15.1 2/2/2 Unpublished data on file 
with P.M. Fernandes 

February 16, 1983 Belgrave, Australia Forest - eucalypt 42 5 2.6 52 6.6 19.3 2/3/2 Keeves and Douglas (1983) 
February 16, 1983 Belgrave, Australia Forest - eucalypt 41 7 2.9 50 3.5 13.9 2/3/2 Keeves and Douglas (1983) 
November 17, 1962 Longford, Australia Forest - eucalypt 32.7 17 4.3 48 1.4 12.0 1/3/2 McArthur (1965) 
November 15, 2002 Redmond, Australia Forest - eucalypt 35 13 3.5 50 6.0 8.5 2/3/3 McCaw (2003) 
February 16, 1983 East Trentham/ 

Macedon, Australia 
Forest - eucalypt 41 5 3.5 44 4.3 24.7 2/3/4 Rawson et al. (1983) 

February 16, 1983 East Trentham/ 
Macedon, Australia 

Forest - eucalypt 41 7 3.5 70 11.2 21.6 2/3/4 Rawson et al. (1983) 

February 16, 1983 East Trentham/ 
Macedon, Australia 

Forest - eucalypt 41 7 3.5 47 6.0 14.7 2/3/4 Rawson et al. (1983) 

February 16, 1983 East Trentham/ 
Macedon, Australia 

Forest - eucalypt 41 7 3.5 33 1.3 22.5 2/3/4 Rawson et al. (1983) 

December 20, 1974 Rocky Gully, 
Australia 

Forest - eucalypt 40 10 3.0 70 6.4 15.0 4/3/3 Underwood et al. (1985) 

April 4, 1978 Brunswick, Australia Forest - eucalypt NA NA 4.0 52 8.0 NA 3/3/3 Underwood et al. (1985) 
February 16, 1983 Deans Marsh, 

Australia 
Forest - eucalypt 40 11 3.0 70 10.0 NA 2/4/3 Rawson et al. (1983) 

January 29, 2009 Delburn, Australia Forest - eucalypt 44.5 10 3.2 42 2.2 15.0 2/3/3 Harris et al. (2011) 
February 7, 2009 Maiden Gully, 

Australia 
Forest - eucalypt 44.9 7 2.8 41 1.9 10.0 2/3/3 Harris et al. (2011) 

March 8, 1990 Millbrook Road, 
Australia 

Forest - eucalypt 31.5 12 3.7 30 1.5 NA 2/3/3 Pratt (1990) 

January 20, 1988 Blackjack, Australia Forest - eucalypt 29 18 4.4 30 1.5 NA 1/2/1 Bartlett (1993) 
January 14, 1962 Dandenongs, 

Australia 
Forest - eucalypt 39.2 12 3.5 39 1.2 13.5 3/3/3 Harris et al. (2011) 

January 8, 1969 Maldon, Australia Forest - eucalypt 37.1 6 2.8 37 0.8 3.0 3/3/3 Harris et al. (2011) 
January 13, 1939 Black Friday, 

Australia 
Forest - eucalypt 44.6 9 3.0 56 1.6 16.4 5/3/3 Harris et al. (2011) 

January 13, 1939 Colac, Australia Forest - eucalypt 42.2 9 3.1 56 4.9 13.1 3/3/3 Sullivan (2004) 
January 13, 1939 Kyneton, Australia Forest - eucalypt 42.2 9 3.1 56 5.2 13.9 3/3/3 Sullivan (2004) 
January 13, 1939 Tawong, Australia Forest - eucalypt 46 13 3.5 56 7.9 10.7 3/3/3 Sullivan (2004) 
January 18, 2003 Mt Stromlo, 

Australia 
Forest - conifer 37 10 6.0 37 3.5 NA 1/1/1 Gellie (2005) 

July 31, 2001 Las Palomas, Spain Forest - conifer 28 21 4.0 57 2.6 7.4 1/1/1 Rodríguez y Silva and 
Molina-Martínez (2012) 

February 2, 1979 Caroline, Australia Forest - conifer 37 17 6.0 46 4.8 25.0 2/3/3 Billing (1980) 
June 17, 2017 Pedrogão Grande, 

Portugal 
Forest - conifer 31.5 34 7.0 30 2.3 17.3 2/3/2 Guerreiro et al. (2017) 

February 26, 1995 Berwick Forest, New 
Zealand 

Forest - conifer 34.5 10 6.0 30 0.5 30.0 1/3/1 Fogarty et al. (1997) 

February 26, 1995 Berwick Forest, New 
Zealand 

Forest - conifer 33.5 14 6.0 32 0.9 30.0 1/3/1 Fogarty et al. (1997) 

February 26, 1995 Berwick Forest, New 
Zealand 

Forest - conifer 33 16 6.0 33 2.3 30.0 1/3/1 Fogarty et al. (1997) 

July 21, 2009 Horta de Sant Joan, 
Spain 

Forest - conifer 38 11 6.0 62 4.9 NA 2/3/1 GRAF (2010) 

February 16, 1983 Narraweena, 
Australia 

Forest - conifer 40 10 6.0 80 8.0 NA 2/3/3 Keeves and Douglas (1983) 

February 16, 1983 Mount Muirhead, 
Australia 

Forest - conifer 40 10 6.0 80 12.5 NA 2/3/3 Keeves and Douglas (1983) 

September 6, 1988 Canyon Creek, USA Forest - conifer 27 15 6.0 55 6.2 27.9 4/3/2 Goens (1990), 
Bushey (1991), Ward et al. 
(1994) 

October 20, 1991 East Bay, USA Forest - conifer 32.2 17 6.0 37 1.5 NA 1/2/1 Alexander (2002), NFPA 
(1992) 

October 15, 2017 Mata Nacional de 
Leiria, Portugal 

Forest - conifer 32.1 19 6.0 37 4.7 13.3 2/2/2 Guerreiro et al. (2018) 

August 3, 1936 Galatea Creek, 
Canada 

Forest - conifer NA NA 7.0 55 7.8 NA 2/3/1 Fryer and Johnson (1988) 

May 8, 1987 Wallace Lake, 
Canada 

Forest - conifer 28 12 6.0 30 3.9 NA 4/3/1 Hirsch (1988) 

September 27, 1994 Beerburrum, 
Australia 

Forest - conifer 36.6 12 6.0 50 3.6 NA 1/3/1 Hunt et al. (1995) 

November 6, 1994 Beerburrum, 
Australia 

Forest - conifer 24 14 6.0 38 1.6 NA 1/3/1 Hunt et al. (1995) 

January 10, 1987 Lago Puelo, 
Argentina 

Forest - conifer 30 20 7.0 30 1.7 NA 4/2/2 Sagarzazu and Defossé 
(2009) 

January 10, 1987 Lago Puelo, 
Argentina 

Forest - conifer 30 20 7.0 50 4.3 NA 4/2/2 Sagarzazu and Defossé 
(2009) 

(continued on next page) 
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Table A2 (continued ) 

Calendar date Fire name, country Vegetation/ 
fuel type 

T 
(◦C) 

RH 
(%) 

MC 
(%) 

U10 (km h− 1) R (km h− 1) Fine fuel load 
(kg m− 2) 

Reliability: 
weather/ 
fuel/R a 

Source 

July 23, 2018 Mati, Greece Forest - conifer 38 17 6.0 44 2.6 NA 2/NA/2 Xanthopoulos et al. (2018) 
January 10, 1987 Lago Puelo, 

Argentina 
Forest - conifer 30 20 7.0 45 2.3 NA 4/2/2 Sagarzazu and Defossé 

(2009) 
July 27, 2007 Obejo, Spain Shrubland 39 11 4.5 36 3.1 28.3 1/1/1 Rodríguez y Silva and 

Molina-Martínez (2012) 
July 31, 2001 Sierra Parda, Spain Shrubland 33 18 5.9 33 4.1 28.3 1/1/1 Rodríguez y Silva and 

Molina-Martínez (2012) 
July 18, 2012 Tavira, Portugal Shrubland 21 24 6.0 40 2.0 17.0 2/3/2 Viegas et al. (2012) 
December 21, 1989 Fitzgerald River NP, 

Australia 
Shrubland 33 12 4.0 42 1.9 NA 2/5/3 McCaw et al. (1992) 

December 21, 1989 Fitzgerald River NP, 
Australia 

Shrubland 35 9 3.5 43 3.0 NA 2/5/3 McCaw et al. (1992) 

December 21, 1989 Fitzgerald River NP, 
Australia 

Shrubland 35 9 2.0 34 7.5 NA 2/5/3 McCaw et al. (1992) 

December 21, 1989 Fitzgerald River NP, 
Australia 

Shrubland 35 9 3.0 43 4.8 NA 2/5/3 McCaw et al. (1992) 

July 9, 2013 Picões, Portugal Shrubland 34 15 5.5 35 4.0 NA 2/3/2 Viegas et al. (2013) 
October 15, 2017 Mata Nacional de 

Leiria, Portugal 
Shrubland 29.9 21 4.3 40 6.5 17.1 2/2/2 Guerreiro et al. (2018) 

October 15, 2017 Relva Velha, 
Portugal 

Shrubland 32.9 16.8 5.8 35 4.5 15.0 2/3/2 Guerreiro et al. (2018) 

September 19, 2010 Machine Gun, USA Shrubland 32 6 2.9 37 2.6 NA 2/3/1 Frost (2015) 
December 22, 1980 Dimboola, Australia Shrubland 35.7 16 6.1 40 2.0 10.0 3/3/3 Harris et al. (2011) 
January 7, 1979 Epuyn Lake, 

Argentina 
Shrubland 30 20 6.6 39 1.1 NA 4/2/2 Sagarzazu and Defossé 

(2009) 
October 9, 2017 Tubbs, USA Shrubland 32.8 7 4.5 73 6.5 NA 2/3/2 Coen et al. (2018), Nauslar 

et al. (2018) 
August 5, 2018 Perna da Negra, 

Portugal 
Shrubland 24.8 14 6.1 34 2.4 21.7 3/3/3 Rego et al. (2019) 

aSee Table A3.  

Table A3 
Reliability rating for weather, fuel and fire spread observations for wildfire case studies. Adapted from Cheney et al. (2012) and Cruz et al. (2012).  

Rating Weather Fuel complex Rate of spread 

1 Nearby (<25 km) meteorological station or direct measurements in 
the field with high quality instruments, and/or validated modelled 
wind field. 

Fuel characteristics inferred from a fuel 
age function developed for the particular 
fuel type and area. 

Direct timing of fire spread measurements (i.e. 
infrared scans, aerial observations, observed 
reference points with photographs). 

2 Meteorological station within 50 km of the fire with no local effects 
(i.e. terrain, vegetation) on the wind field, and/or partially validated 
modelled wind field. 

Fuel characteristics inferred from a visual 
assessment or measurements of nearby 
unburnt forest. 

Reliable timing (within ±15 min) of fire spread by 
field observations with general reference points. 

3 Meteorological station within 50 km of the fire but there are local 
effects on the wind field or the data not representative of the fire 
area. Meteorological station >50 km of the fire, reconstruction of 
wind speed for fire site. 
Unvalidated modelled wind field. 

Fuel characteristics inferred from a fuel 
age curve for a forest type of similar 
structure. 

Reconstruction of fire spread with numerous cross 
references. 

4 Spot meteorological observation near the fire. Fuel characteristics typical of equilibrium 
level in the representative fuel type. 

Doubtful reconstruction of fire spread. 

5 Distant meteorological observations at locations very different to fire 
site. 

Qualitative fuel type description. Anecdotal or conflicting reports of fire spread.  
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