Findings about the fluid dynamics of wildfires

That ambient winds influence fire behavior is well known. Less understood is how fire influences the winds and how the feedback affects the fire’s evolution.

wildfire dynamics wind fields
One freeze-frame moment in a simulation illustrating the dynamics of wind fields in a vertical plane as a wildfire approaches — towers and troughs. From the video.
wildfire dynamics wind fields
Towers and troughs, in reality. In this experimental grass fire, the few visible peaks are separated by gaps in which the wind currents sweep downward between the flames and feed the peaks on opposite sides. (Courtesy of Mark Finney, US Forest Service, Missoula Fire Sciences Laboratory.)

The more knowledge firefighters have about the fluid dynamics of wildfires the better equipped they will be to take on the tasks of igniting prescribed fires and suppressing wildfires.

Below is an article written by Rod Linn, who leads development, implementation, testing, and application of computational models of wildfire behavior in the Earth and environmental sciences division at Los Alamos National Laboratory in New Mexico. From Physics Today 72, 11, 70 (2019).  https://doi.org/10.1063/PT.3.4350


Fluid dynamics of wildfires

Wildland fires are an unavoidable and essential feature of the natural environment. They’re also increasingly dangerous as communities continue to spread away from urban areas. Unfortunately, a century of wildfire exclusion—the strategy of putting out fires as fast as they start—has led to a significant buildup of fuel in the form of overgrown forests. Continuing to keep wildfires at bay is simply not sustainable. In 2018, nearly 60,000 fires scorched parts of the continental US. California wildfires exemplify what can happen when they burn through communities: In November alone that year fires killed more than 90 people and destroyed some 14,000 homes and businesses.

Decision makers are striving to find ways to manage the consequences of those fires and yet still allow them to thin out dense, fuel-heavy forests and reset ecosystems. Among other things, the goal requires that land managers be able to predict the behavior of wildland fires and their sensitivity to ever-changing conditions. Many factors, including the interactions between fire, surrounding winds, vegetation, and terrain, complicate those predictions.

That ambient winds influence fire behavior is well known. Less understood is how fire influences the winds and how the feedback affects the fire’s evolution. As the fire rages, it releases energy and heats the air. The rising air draws in air below it to fill the gap in much the same way as air is drawn into a fireplace and rises up a chimney. The interaction between rising air and ambient winds controls the rate at which surrounding vegetation heats up and whether it ignites. The interaction thus determines how quickly a fire spreads.

FUEL MATTERS
The influence of the fire–atmosphere coupling is much greater in wildland fires than in building fires. Wildland fires are fed by fine fuels—typically grasses, needles, leaves, and twigs; often, tree trunks and large branches do not even burn. Buildings burn thicker fuels, such as boards, furniture, and stacks of books. The difference matters because fine fuels exchange energy more efficiently with surrounding hot air and gases. In those hot, fast-moving gases, the fuels’ temperature rises quickly to the point where they ignite.

But the converse is also true. Because wildland fuels are primarily fine, they are also efficiently cooled when the surrounding ambient air is cooler than they are. That means that the indraft of air caused by a fire may actually impede its spread. A rising plume can draw cool air over foliage and litter near a fire line and prevent those fine fuels from heating. The grasses just outside a campfire ring are a case in point: They are continuously exposed to the fire’s radiant heat, but the cool indraft effectively prevents them from reaching the point of ignition.

The spread of a wildfire is sometimes conceptualized as an advancing wall of flame that the wind forces to lean toward unburned fuels that then ignite in front of the fire. Although that wall-of-flame paradigm simplifies models of fire behavior, it is not correct. Convective cooling would prevent the wall of flame from spreading by radiation alone, and for convective heating to spread the fire, the wind would have to be strong enough to lean the flame to the point where it touches the unburned fuel. Were that true, the fires would be unable to spread in low-wind conditions because the buoyancy-driven updrafts would keep the flames too upright.

If you were to look upon an advancing wildfire from the front, you would actually see a series of strong updrafts, visible as towers of flame that are separated by gaps, as shown in figures 1 and 2. The towers are regions where the buoyancy-driven updrafts carry heat upward. They are fed by ambient wind drawn into the gaps between them, as described earlier. When the ambient wind is strong enough, it pushes air through the gaps between the towers, but that air is heated as it blows over burning vegetation. The motion of hot gases through the fire line disrupts the indraft of cool ambient air and ignites grasses and foliage in front of the fire. That’s the primary way a wildfire spreads.

A second factor that influences the spread is the shape of the fire line, because different parts of the blaze compete for wind. The headfire, the portion moving the fastest, often has trailing flanking fires that form a horseshoe shape and open up to the ambient wind. Part of that wind gets redirected toward the flanks of the horseshoe. The strength, length, and proximity of the flanking fires to each other thus help determine how much wind reaches the headfire. The narrower the horseshoe is, the larger the fraction of wind diverted to the flanks, the lower the wind speed reaching the headfire, and the slower it spreads.

Another factor to be considered is the spatial arrangements of fuels. The potential for wildfires spreading from the crown of one tree to another is reduced when the spacing between trees increases. In that case more horizontal wind is required for flames to jump between trees. Indeed, removing trees is a common fire-risk-management practice. But the strategy behind it is more complex than just removing fuel. Gaps in a forest canopy also make it easier for high-speed winds above the canopy to reach fires on the ground. So although reducing the number of trees might reduce the crown-to-crown fire activity, it might increase the spread rate of a surface fire.

PRESCRIBED FIRE
In some regions of the US, land managers counter the threat of wildfires and promote ecosystem sustainability by purposefully lighting fires. Carefully controlled, prescribed burns, which clear duff and deadwood on the forest floor, are often lit at multiple locations; fire-induced indrafts at one location influence fires at other locations. For example, a single line of fire under moderate winds might reach spread rates and intensities that are undesirable or uncontrollable, but the addition of another line of fire upwind can influence how much ambient wind reaches the original fire and thus reduces its intensity.

The spread of the upstream fire line, ignited second, is purposefully limited, as it converges on the area downwind where the first fire has burned off fuel. Practitioners can manipulate the flow of wind between fire lines by adjusting the spacing between ignitions. Fire managers might tie the various ignition lines together—reducing the fresh-air ventilation, increasing the interaction between the lines, and causing fire lines to rapidly pull together—to give themselves more control over the spread.
The interaction between multiple fire lines can even stop a wildfire in its tracks. When firefighters place a new fire line downwind of a fire, they often hope that the indrafts will pull the so-called “counter fire” toward the wildfire and remove fuel in front of it. Unfortunately, the maneuver requires a good understanding of the wildfire’s indraft strength. Too weak an indraft could turn the counter fire into a second wildfire.

After realizing the huge significance of the wind interactions in wildfires over the past two decades, the science community is striving to better account for them. Those efforts should improve predictions of how a wildfire will behave in various conditions. To that end, some researchers, including me, use computer models to explicitly account for the motion of the atmosphere, wildfire processes, and the two-way feedbacks between them. Others perform experiments at scales ranging from meters (such as in wind tunnels) to kilometers (such as in high-intensity fires on rugged topography) for new insight on the nature of those fire–atmosphere interactions or to confirm existing models.

SIMULATION VIDEO

(If you’re having trouble playing the video, you can see it on YouTube)

The [above] simulation illustrates the dynamics of wind fields in a vertical plane, located at the white horizontal line, as a wildfire approaches it. The colors mark the speed u of the wind perpendicular to the plane, with red indicating motion toward the viewer (out of the screen), and blue indicating motion away from the viewer. As the clip shows, the fire starts to influence the winds long before it reaches the plane, and the wind patterns change in scale and character as the fire approaches. As the fire crosses the plane, the towers and trough flow patterns become apparent. Some locations show strong upward motion, whereas others have strong horizontal or even slightly downward motion. The colors on the ground surface illustrate the convective cooling (blue) that occurs as a result of the movement of cool air over the fuel— grasses in this simulation—and locations in front of the fire where the fuels are being convectively heated (red).

Nebraska Forest Service acquires advanced wildland fire simulator

Above: Nebraska Forest Service Simtable. Screen grab from the KOTO video below.

We have written before about the Simtable that can project a spreading fire and an aerial photo onto a sand table that has been sculpted to resemble the topography for that area. It is an excellent training tool to simulate a potential fire or an actual on-going fire.

In this report from KDUH/KOTA the system recently acquired by the Nebraska Forest Service is described, including features that were new to me.

Below is an excerpt from the news coverage:

…NFS Fire Management Specialist Seth Peterson says the simulation gives fire officials advance knowledge of what they would need to do if a fire breaks out in a certain area. It could also make a big impact during a real wildfire event. A smartphone app for firefighters in the field can add valuable, on-site information to the simulator to make it react in real time.

“That iphone will know where he is on the map, and the IC (Incident Commander) will be able to see exactly where that firefighter is on the line. The firefighter can then update off his phone and basically feed the IC all the information he needs to be making all the decisions, without even being on the fire,” says Peterson…

Each simulator costs about $25,000.

Articles on Wildfire Today tagged “simulation”.

video platformvideo managementvideo solutionsvideo player

Collecting, processing, and distributing weather and fire behavior data on a smart phone

A modern smartphone has many times the processing power of the computers on the Apollo spacecraft that took astronauts to the moon. Increasingly, wildland firefighters in the field are taking advantage of the smart brilliant devices in their pockets.

An article published in Fire Management Today (in the third quarter of 2015) covers two smart phone applications, or apps. After the user inputs the current weather and environmental conditions they can calculate various parameters and share them via mail or use various archiving options. One of the apps even uploads data to a remote computer server where advanced simulations can be performed which then return forecasts for the next 3 to 12 hours.

Fire Weather Calculator 

Fire Weather Calculator

(These images are screen shots from the app.)

Below, FDFM and PIG, are Fine Dead Fuel Moisture and Probability of Ignition. The app can harvest information from the smart phone and insert it into the fields, including time, date, latitude, longitude, and elevation.

Fire Weather Calculator

From Fire Management Today:

This application allows the user to input traditional observations (e.g., dry bulb, wet bulb, etc.) and have the application calculate critical information, such as relative humidity and probability of ignition, which both saves time and ensures consistency between weather observers. More importantly, however, is the ability to archive and share these digital observations with other users and managers in real time. This application allows for more streamlined management of weather information, a critical aspect of any fire event. The ability to share observations, particularly if many users are archiving their observations, will lead to a very useful archive of crowd-sourced data that will be used to create value-added products, such as the calculations of 3-dimensional weather fields that could be shared with personnel to increase their situational awareness.

Fire Weather Calculator is for Android devices and iPhones.

Topofire Weather app

The Topofire Weather app takes the weather calculations to the next level, however it is no longer available. In searching for it we contacted one of the authors of the article, Matt Jolly, a research ecologist at the Missoula Fire Sciences Laboratory, who told us that it has been removed because they “are working on better options for displaying geographic information across all devices, rather than just a few platforms. We are almost ready to release it but development is going slowly right now.”

Topofire Weather looks like it was rather intriguing, as you can see from the description in Fire Management Today:

Similar to the Fire Weather Calculator app described above, this application allows users to enter a suite of fire weather observations that are normally collected on incidents. These observations, as well as the time and location, are sent directly to the TOPOFIRE server, where they are permanently archived and can be made available to users and fire weather forecasters. Weather information entered into the phone can then be used to parameterize the WindNinja simulation model, using either current observations or gridded data from the Real-Time Mesocale Analysis dataset (RTMA).

Users can also request forecasts for the next 3 to 12 hours, using data from the National Digital Forecast Database. Model simulations are then run on the TOPOFIRE server, and outputs are returned to the user’s phone in the form of a keyhole markup language (.KML) file that can be opened on the phone on GoogleEarth.

Topofire

(The image above is from the article in Fire Management Today. Click on it to see a larger version.)

The Topofire Weather app apparently required access to government computer servers, which may prevent the ordinary user from being able to take advantage of its entire functionality.

We will look forward to the next generation of the app.

Second generation of Simtable being developed

In May we recorded the video above and told you about the Simtable which projects 3-D wildfire simulations onto a sand table which can be molded to resemble the topography in a specific area.  Fire modeling algorithms simulate the spread of fire through the vegetation and across the topography while also taking weather and fuel conditions into account. You can simulate a fire at your choice of location, or you can view the spread of historic fires. The system can also be used to simulate and train for evacuations, floods, and hazardous material incidents — at a starting price of $25,000.

A researcher at San Diego State University is developing the next generation of the Simtable which he hopes to put into the hands of wildland firefighters out on the ground.

10News reports:

“Any firefighter with a smartphone or tablet could download it and have the mapping system,” said [Justin Freiler of SDSU’s Visualization Center].

They are not there yet, as a mobile app is still in development, but the hope is to make the system available to firefighters in the near future.

Simtable demonstration

At the Large Fire Conference in Missoula, Montana today we were intrigued by the Simtable in the exhibits area. The technology uses a projector connected to a computer to place an image on a sand table, resulting in an amazing three dimensional simulation of the spread of fires. We first wrote about the system in 2010.

It is the software that takes it to the next level. Fire modeling algorithms simulate the spread of fire through the vegetation and across the topography while also taking weather and fuel conditions into account. You can simulate the spread of a fire at your choice of location. Or, you can view the spread of historic fires. So far the company has collected wildfire perimeter mapping data for dozens of actual fires over the last two years. Using linear interpolation it can produce videos showing the fire spread from beginning to end, or at least to the extent that mapping data is available.

It can all be yours at a starting price in the mid-$20,000s.

Below is a video that we shot today, showing Stephen Guerin demonstrating the system.

Wildfire suppression simulation combined with flight simulation

According to their web site, E-Semble “develops simulation software for the education, training and assessment of incident response and safety professionals, such as police, fire and medical services”. In the video above, they combined flight simulation software with their wildfire response simulation.

Fire simulations have changed since the 1980s. The one we used at Descanso Station in California used four overhead projectors behind a rear-projection screen, and two four-track reel-to-reel tape recorders that enabled eight possible sound effects. Involved in putting on the simulations were a director, an audio technician, a visual technician, and three to four role players. It was a very effective training tool.