Researchers demonstrate that it is possible to accurately measure wildfire rate of spread from an orbiting aircraft

measure wildfire rate of spread from aircraft
Figure 3. Fire spread sequence for Detwiler Fire. Active fire fronts and fire spread vectors are portrayed for the seven-image sequence on 20 July 2017. The background image is a fusion of NAIP colour (depicting vegetation fuels and topography) with a colour density sliced version of the seventh FireMapper 2.0 image.

Now that federal land management agencies are being forced by an act of Congress to begin providing to fire managers the real time location of fires and firefighting resources, it opens a range of cascading benefits beyond just enhancing their safety and situational awareness.

Fire Behavior Analysts that could continuously observe the fire with infrared video from a manned or unmanned aircraft orbiting above the air tankers could make much more accurate, valuable, and timely Fire Behavior Forecasts. The fire spread computer models could be fine-tuned to be more accurate and their outputs could be displayed on the map along with the locations of firefighters who carry tracking devices, enabling the Operations Section Chief to make better-informed strategic and tactical decisions.

But until recently it was not known if georeferenced infrared imagery from an orbiting aircraft was accurate enough to be used for determining the rate of spread.

The short answer is, yes. A paper published last week indicates that the accuracy is sufficient. (FYI — the document is written for other scientists and not for practitioners.)

Now the question becomes, will the federal land management agencies actually implement the program to track the real-time location of fires and firefighters, or will they slow-walk it into oblivion like the Congressional orders to purchase a new air tanker, convert seven HC-130H Coast Guard aircraft into air tankers, and the repeated requests from the GAO and Inspector General to provide data about the effectiveness of firefighting aircraft?

measure wildfire rate of spread from aircraft
Figure 7. Wildfire spread during the Rey Fire on 21 August 2016. (a) Time 1 fire front. (b) Time 2 fire front (7 min later). (c) Fire spread vectors and ROS statistics. (d) 3-D perspective image depicting active fire front and spread vectors. (e) Histogram depicting frequency distribution of ROS estimates for all spread vectors in the two-pass imaging sequence.

Unfortunately even though United States taxpayers funded the research through the U.S. government’s National Science Foundation (grant number G00011220), only some of us will be able to read the fruits of the research since it is not an Open Access document. After it is viewed 50 times free access will be shut off.

Open Access logo
Open Access logo

It is published at Taylor and Francis Online, a private company based in the United Kingdom. So by the time you read this the company may be charging people to read the document. (UPDATE at 7:42 a.m. MST February 21, 2019: General access to the document has been shut off. The company is now charging $50 to view it for 24 hours.)

Not allowing taxpayers to read government funded research unless they pay for it again is reprehensible.

The document is at Taylor and Francis Online: Assessing uncertainty and demonstrating potential for estimating fire rate of spread at landscape scales based on time sequential airborne thermal infrared imaging. By: Douglas Stow, Philip Riggan, Gavin Schag, William Brewer, Robert Tissell, Janice Coen, and Emanuel Storey

New satellites can aid in management of wildfires

Imagery from GOES 16 showed dramatic smoke plumes from the Camp Fire

Screenshot from the GOES 16 time-lapse of the Camp Fire.

The NASA article below lays out how the agency believes the imagery from recently launched satellites can assist in the detection and management of wildfires.


GOES-16, operating as NOAA’s GOES East satellite, is proving to be an invaluable asset in detecting wildfires and helping forecasters provide proactive tactical decision-support services. The satellite’s main instrument, the Advanced Baseline Imager (ABI), offers three times more spectral channels, four times increased resolution, and five times faster coverage than the previous GOES imager. This means a much more detailed look at fire conditions, faster detection of hot spots, and the ability to track fire progression and spread in real time.

National Weather Service (NWS) incident meteorologists (IMETs) are using GOES-16 data to assist firefighting efforts. IMETs who deploy to wildfires are instrumental to the mission. An IMET’s first priority is to keep firefighters and the public safe amid rapidly changing wildfire conditions. During the peak of the Camp Fire in northern California in November 2018, the fire was advancing at a rate of over 100 football fields every minute. A shift in the winds could easily put firefighters in danger.

GOES East captured imagery of the Camp Fire in northern California on November 8, 2018. The wildfire developed in the early morning hours and spread quickly within very windy and dry weather conditions. Hot spots and a large plume of smoke are seen in this fire temperature RGB (red-green-blue) imagery is created with Advanced Baseline Imager bands 7, 6, and 5 (shortwave and near infrared bands), which are used to detect hot spots. To make this animation, the fire temperature imagery is made partially transparent and placed over a GeoColor enhancement, so both the fire’s hot spots and smoke plume are visible.

Timely satellite imagery is critical, life-saving information in a dynamic fire environment. In the past, IMETs had a single low-resolution image that updated every 15 minutes – typically the image was already 20 minutes old when it arrived to the forecaster. Now, GOES-16 frequently detects fires before they are spotted on the ground – often 10 to 15 minutes before emergency notifications to 911.

Alex Hoon, the NWS IMET for both the Camp and Carr Fires in California in 2018, says GOES-16 is crucial to an IMET’s mission to protect lives and property. “Now, forecasters are able to get incredible high-resolution images of the fire every single minute in the field, directly supporting firefighters who are engaged in the fire. Not only is this helping firefighters to more effectively fight fire, but more importantly, it’s helping to keep firefighters safe so that they can also come home to their families,” said Hoon.

GOES-16 is also used to pinpoint the exact location of a fire after reports of smoke. On July 2, 2018, the Pueblo County, Colorado, Emergency Management Office called the NWS Pueblo Weather Forecast Office (WFO) for assistance locating the source of smoke reported near Custer/Fremont/Pueblo County lines. GOES-16 showed a hotspot in northeast Custer County and the Pueblo WFO was able to provide the exact coordinates of what would become the Adobe Fire. Being in a remote and wooded area, the early and more precise geolocation of the fire was helpful for getting crews on the scene quickly.

GOES-16 observations are not just valuable for detecting wildfires but are also critical to observing and monitoring smoke from those fires. GOES-16’s ability to monitor smoke plumes in near-real time is particularly useful in directing firefighting efforts from the air. Deploying airplanes and helicopters to spray fire retardant is often hampered due to poor visibility. GOES-16 can help guide decisions for deploying flights by providing information on the exact location and motion of smoke from a fire. The smoke detection and monitoring information also enable better air quality forecasts.

The benefits from GOES-16 aren’t just seen during a fire but are also important in monitoring burn scars and predicting flash flood events from rain events after a fire. GOES-16 provides critical data for the entire lifecycle of a fire disaster – from drought to fire to floods and landslides.

The new capabilities from GOES-16 are a game-changer for fire weather forecasts and warnings. Soon, GOES-16 will be joined by its twin satellite, GOES-17, as NOAA’s operational GOES West. GOES-17 will provide even better resolution for U.S. West Coast firefighting efforts than GOES-16 due to its location over the Pacific Ocean.

New channels on the ABI provide more information to forecasters and the high resolution and rapid scanning give them high-definition images as often as every minute. Data from the ABI is helping forecasters locate hotspots, detect changes in a fire’s behavior, predict a fire’s motion, and monitor the post-fire landscape like never before. Providing this information to firefighters, emergency managers, and state and county agencies helps NOAA’s Satellite and Information Service meet its mission of protecting the nation’s environment, security, economy and quality of life.

FSU researchers: Most fires in Florida go undetected

By: Zachary Boehm

A new study by Florida State University researchers indicates that common satellite imaging technologies have vastly underestimated the number of fires in Florida.

Holmes Nowell
Christopher Holmes, assistant professor in the department of Earth, Ocean and Atmospheric Science, and Holly Nowell, postdoctoral researcher in EOAS.

Their report, published in collaboration with researchers from the Tall Timbers Research Station and Land Conservancy, challenges well-established beliefs about the nature and frequency of fire in the Sunshine State. While there were more fires than expected, researchers said, strategically prescribed burns throughout the state are proving an effective force against the ravages of wildfire.

The paper appears in the journal Geophysical Research Letters.

For scientists studying fire, sophisticated satellites whizzing far above the Earth’s surface have long represented the best tool for monitoring wildfires and prescribed burns — carefully controlled and generally small fires intended to reduce the risk of unmanageable wildfires.

But FSU researchers suggest that fire experts themselves have been getting burned by faulty data, and that broadly accepted estimates of fire area and fire-based air pollutants might be flawed.

“There are well-known challenges in detecting fires from satellites,” said lead investigator Holly Nowell, a postdoctoral researcher in the Department of Earth, Ocean and Atmospheric Science. “Here we show that only 25 percent of burned area in Florida is detected.”

Using comprehensive ground-based fire records from the Florida Forest Service — which regulates and authorizes every request for a prescribed burn in the state — researchers found dramatic discrepancies between fires detected by satellites and fires documented by state managers.

prescribed fire Florida
Austin Dixon of the Tall Timbers Research Station and Land Conservancy monitors a prescribed burn. Credit: Kevin Robertson

The majority of fires in Florida come in the form of prescribed burns, but because these fires are designed to be brief and contained, they often fall under the radar of satellites soaring overhead.

This is especially true in a state like Florida, where dense cloud cover is common and the warm, wet climate allows vegetation to regrow quickly after a blaze, disguising the scars that fires leave in their wake.

“Like a detective, satellites can catch a fire ‘in the act’ or from the ‘fingerprints’ they leave behind,” said study co-author Christopher Holmes, an assistant professor in EOAS. “In our area, catching an active fire in a thermal image can be hard because the prescribed fires are short, and we have frequent clouds that obscure the view from space.”

The state fire records also revealed a counterintuitive truth: Unlike in western states such as California, where dry conditions frequently produce massive increases in destructive and often uncontrollable fires, Florida actually experiences a decrease in land consumed by fire during drought.

When drought conditions emerge, researchers said, officials are less likely to authorize prescribed burns. And because prescribed burns account for the overwhelming majority of fires in the state, overall fire activity decreases.

This also suggests that prescribed burning programs — which aim to reduce the risk of wildfire in dry conditions — are having a materially positive effect.

“Although we still have occasional destructive wildfires, including the recent tragic Eastpoint fire, our results indicate that prescribed fire policy is helping to reduce wildfire risk,” Holmes said, referencing the June 2018 wildfire that destroyed dozens of homes in Florida’s Big Bend region.

Tall Timbers specialist Tracy Hmielowski uses a drip torch to ignite vegetation as part of a prescribed burn. Credit: Kevin Robertson
While the team’s study reconfirms the utility of prescribed burning, it calls into question prevailing estimates for airborne pollution from fire. If, as the study suggests, only 25 percent of fires in Florida are detected by satellites, then there could be “a rather large bias and a significant potential underestimation of emissions,” Nowell said.

The study’s findings are specific to Florida, but researchers suspect that similar satellite limitations may be skewing fire detection — and, consequently, emission estimates — in neighboring regions and geographically analogous areas like the savannas of Africa or the agricultural belts of Europe and Asia.

“We believe this result easily extends to the rest of the Southeast United States — which burns more area than the rest of the United States combined in a typical year — and other similar regions throughout the world that use small prescribed burns as a land management technique,” Nowell said.

Kevin Robertson, Casey Teske and Kevin Hiers from Tall Timbers contributed to this study. The research was funded by the National Aeronautics and Space Administration.

Thanks and a tip of the hat go out to Tom.
Typos or errors, report them HERE.

New South Wales fire mapping

Gold Mine Road Fire,
Gold Mine Road Fire, NSW RFS

The image above was distributed by the New South Wales Rural Fire Service, showing a map of the Gold Mine Road Fire 17 km southwest of Towamba in the Yambulla State Forest. The map is part of the agency’s Common Operating Picture.

It was apparently obtained by infrared equipment that processed the data in a format we have not seen publicly in the United States. The black lines are most likely the path of the line scanner as the mirror rotated at thousands of RPM in a fixed wing aircraft. It’s interesting that the target discrimination marks (TDMs) only appear at the ends of each line, rather than at every heat source. The intensity of the heat is represented by a range of orange and yellow colors.

The U.S. Forest Service has been mapping fires with infrared equipment for at least four decades, but the folks down under also have very advanced IR systems.

Gold Mine Fire map NSWRFS
Map of the Gold Mine Fire as seen in the NSW RFS Common Operating Picture.

 

NASA to launch 200 satellites that will detect wildfires

CubeSat
CubeSat. NASA photo.

The National Aeronautics and Space Administration plans to launch a network of 200 small satellites that will detect wildfires within 15 minutes after a blaze grows to be at least 35 to 50 feet across. NASA’s Jet Propulsion Laboratory is working on a concept for a network of space-based sensors called FireSat in collaboration with Quadra Pi R2E. Within three minutes of detecting a fire from orbit, FireSat would notify emergency responders in the area of the fire.

Robert Staehle, lead designer of FireSat at JPL, and his team first presented the concept of FireSat in 2011 to the joint NASA/U.S. Forest Service Tactical Fire Remote Sensing Advisory Committee. They spent the subsequent years refining their understanding of fire monitoring needs and technological requirements.

“Such a system has only now become feasible at a reasonable cost, enabled by advances in commercial microelectronics that NASA, JPL and universities have tested in space via CubeSat experiments, and by software technology originally developed to give Mars rovers and Earth orbiters more autonomy in their science observations,” Staehle said.

This sounds like science fiction, but launches should begin in 2017 with a fully operational system of FireSat sensors in space by June of 2018.

CubeSats are 4 inches by 4 inches by 4 inches and weigh about 3 pounds. They are generally built from off the shelf components at a cost of thousands rather than millions of dollars.